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Problem Set # 1: Solution Key
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Take the conditional expectation;
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Therefore, Bl is biased.
Next, the conditional variance is;
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i) The correlation between y and z is 1 if a>0, -1 if a<0 and 0 if a=0.

ii) The support of the joint distribution of y and z can be represented by
the following set;

{(z,y) : z = ay, y € R} (It is a straight line)

iii) The correlation between y and x ( z = y?) is zero, since Cov(y,y?) =
E(y*y®) - E@W)E®?) = E(y®) =0

iv) The support is {(z,y) : =%, y € R}

v) In the above problem, clearly, there are dependence between x and
y. However, our linear relationship measure, correlation does not capture
this relationship.

(a) OLS is BLUE if ¢; are homoskedastic with mean zero.

Mean: E(g) == x(-1)4+ = x (=1) =0 for i=1,2

Variance: E(e?) =

N = N

x (=1)* + % x (—1)? =1 for i=1,2
Covarince : Cov(e;,e5) = E(gse5) — E(g;)E(g;) =0 for i #j
Hence, our OLS is BLUE.
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We have the following exact distribution of B
Prob. .25 25 .25 .25
Jé] 2/5 4/5 6/5 8/5
(¢) The alternative estimator
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B is clearly unbiased.
Hence, the exact distribution of 8* is

Prob. .25 .50 .25
B 1/3 1 5/3



(d) The exact variance of the two estimators:
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Hence, V(8) > V(B), which is consistent with B being BLUE.

(a) Recall that
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(b) R? is defined as the ratio of the explained sum of squares(ESS) to
total sum of squares(TSS).
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(¢) By the normality assumption, we know that

B~ N(B, m)
Moreover,
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where S? = ﬁ > €2. We can also show that B and S? are indepen-
dent each other. Then,



@)
v (@

e B - p
(n—2)52 S (n )

o? V2 (xi—T)2

(n—2)

We want to reject the null hypothesis if

t=|——%——| > to.or5(20)
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under the null hypothesis. On the other hand,
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Hence, the test statistics is given by
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t= = 1.8787

Since tg.975(20) = 2.086,we cannot reject the null hypothesis.
5. 1)

by (X MyX 1) X My

(X1 M2 X1) " X Mo (X1 8, + XoBy +¢)

(X1 Mo X1) 7 X Mo X1 By + (X5 Mo X1) ™ X ] Mo Xo 3,
(X[ My X)L X] Moe
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Take expectation.

E(b) By + E[(X]MaX1) ' X Mae]
By + (X1 M2 X1) " X Mo E[e]
By + (X1 M2 X1) ' X Mo X1y

= Bi+7



Therefore, by is biased.
i)
by = (X4M1X5) 'X,Myy
= (X5M1Xo) ' Xy My (X18, + XafBy +¢)
(X5M X)) P XOM X1 By + (XM X)L X4 M X0 3,
H(XHM X)Xy My e
= 0+ By + (X{M Xo) P XM e

Take expectation.

E(by) = PBo+ (XM Xo) ' XM E(e)
= By + (XM Xo) ' X5 M X1y
(Note : M;X,=0)
Bs+0
= By

Therefore, by is unbiased.

6. Let A be a orthogonal projection matrix onto the space spanned by a
column of ones.

R g2 (aAy)
(a) B* = R = R} = ooy Ay

-~ /A ~ /A A~ AN
(b) By = %’ By = %’ and we have 3,8, = R?

~ ’ ’
(¢) From 3, = i,ﬁz and R? =1 — 57y We have

tl — Bl — x'Ay

V(@ Az)=1(efeh)/(n=2) /(2 Az)(y' Ay)(1—R? /(n—2)
Note that x and y are symmetric in the above formula. This proves
ty = to.




