Cornell University

Department of Economics

Econ 620 - Spring 2007
Instructor: Professor Kiefer
TA: Jae-ho Yun (jy238@cornell.edu)

Problem Set \# 1: Solution Key

1.

$$
\begin{aligned}
\widehat{\beta}_{1}= & \sum \frac{\left(x_{i}-\bar{x}\right) y_{i}}{\left(x_{i}-\bar{x}\right)^{2}}=\sum \frac{\left(x_{i}-\bar{x}\right)\left(\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\varepsilon_{i}\right)}{\left(x_{i}-\bar{x}\right)^{2}} \\
= & \beta_{0} \sum \frac{\left(x_{i}-\bar{x}\right)}{\left(x_{i}-\bar{x}\right)^{2}}+\beta_{1} \sum \frac{\left(x_{i}-\bar{x}\right) x_{i}}{\left(x_{i}-\bar{x}\right)^{2}}+\beta_{2} \sum \frac{\left(x_{i}-\bar{x}\right) x_{i}^{2}}{\left(x_{i}-\bar{x}\right)^{2}} \\
& +\sum \frac{\left(x_{i}-\bar{x}\right) \varepsilon}{\left(x_{i}-\bar{x}\right)^{2}} \\
= & \beta_{1}+\beta_{2} \sum \frac{\left(x_{i}-\bar{x}\right) x_{i}^{2}}{\left(x_{i}-\bar{x}\right)^{2}}+\sum \frac{\left(x_{i}-\bar{x}\right) \varepsilon}{\left(x_{i}-\bar{x}\right)^{2}} \\
& \text { Note: } \sum \frac{\left(x_{i}-\bar{x}\right)}{\left(x_{i}-\bar{x}\right)^{2}}=0, \sum \frac{\left(x_{i}-\bar{x}\right) x_{i}}{\left(x_{i}-\bar{x}\right)^{2}}=1
\end{aligned}
$$

Take the conditional expectation;

$$
\begin{gathered}
E\left(\widehat{\beta}_{1} \mid x_{i}\right)=\beta_{1}+\beta_{2} \sum \frac{\left(x_{i}-\bar{x}\right) x_{i}^{2}}{\left(x_{i}-\bar{x}\right)^{2}} \\
\text { Note: } E\left(\left.\sum \frac{\left(x_{i}-\bar{x}\right) \varepsilon}{\left(x_{i}-\bar{x}\right)^{2}} \right\rvert\, x_{i}\right)=0
\end{gathered}
$$

Therefore, $\widehat{\beta}_{1}$ is biased.
Next, the conditional variance is;

$$
\begin{aligned}
\operatorname{Var}\left(\widehat{\beta}_{1} \mid x_{i}\right)= & E\left[\left(\widehat{\beta}_{1}-E\left(\widehat{\beta}_{1} \mid x_{i}\right)\right)^{2} \mid x_{i}\right] \\
= & E\left[\left.\left(\sum \frac{\left(x_{i}-\bar{x}\right) \varepsilon}{\left(x_{i}-\bar{x}\right)^{2}}\right)^{2} \right\rvert\, x_{i}\right] \\
& (\text { cross product terms are all zero }) \\
= & \frac{\sigma^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}
\end{aligned}
$$

2. i) The correlation between y and z is 1 if $a>0,-1$ if $a<0$ and 0 if $a=0$.
ii) The support of the joint distribution of y and z can be represented by the following set;
$\{(x, y): z=a y, y \in R\}$ (It is a straight line)
iii) The correlation between y and $\mathrm{x}\left(x=y^{2}\right)$ is zero, since $\operatorname{Cov}\left(y, y^{2}\right)=$ $E\left(y * y^{2}\right)-E(y) E\left(y^{2}\right)=E\left(y^{3}\right)=0$
iv) The support is $\left\{(x, y): x=y^{2}, y \in R\right\}$
v) In the above problem, clearly, there are dependence between x and y. However, our linear relationship measure, correlation does not capture this relationship.
3. (a) OLS is BLUE if ε_{i} are homoskedastic with mean zero.

\[

\]

Hence, our OLS is BLUE.
(b)

$$
\begin{aligned}
\widehat{\beta} & =\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}=\frac{\sum x_{i}\left(x_{i} \beta+\varepsilon_{i}\right)}{\sum x_{i}^{2}}=\beta+\frac{\sum x_{i} \varepsilon_{i}}{\sum x_{i}^{2}} \\
& =1+\frac{1 \times \varepsilon_{1}+2 \times \varepsilon_{2}}{1^{2}+2^{2}}
\end{aligned}
$$

We have the following exact distribution of $\widehat{\beta}$

$$
\begin{array}{ccccc}
\text { Prob. } & .25 & .25 & .25 & .25 \\
\widehat{\beta} & 2 / 5 & 4 / 5 & 6 / 5 & 8 / 5
\end{array}
$$

(c) The alternative estimator

$$
\begin{aligned}
\beta^{*} & =\frac{\sum y_{i}}{\sum x_{i}}=\frac{\sum\left(x_{i} \beta+\varepsilon_{i}\right)}{\sum x_{i}}=\beta+\frac{\sum \varepsilon_{i}}{\sum x_{i}} \\
& =1+\frac{\varepsilon_{1}+\varepsilon_{2}}{1+2}
\end{aligned}
$$

β^{*} is clearly unbiased.
Hence, the exact distribution of β^{*} is

Prob.	.25	.50	.25
β^{*}	$1 / 3$	1	$5 / 3$

(d) The exact variance of the two estimators:

$$
\begin{aligned}
V(\widehat{\beta}) & =V\left(\frac{\varepsilon_{1}+2 \varepsilon_{2}}{5}\right)=\frac{1}{25}\left(V\left(\varepsilon_{1}\right)+4 V\left(\varepsilon_{2}\right)\right)=\frac{1}{5} \\
V\left(\beta^{*}\right) & =V\left(\frac{\varepsilon_{1}+\varepsilon_{2}}{3}\right)=\frac{1}{9}\left(V\left(\varepsilon_{1}\right)+V\left(\varepsilon_{2}\right)\right)=\frac{2}{9}
\end{aligned}
$$

Hence, $V\left(\beta^{*}\right)>V(\widehat{\beta})$, which is consistent with $\widehat{\beta}$ being BLUE.
4. (a) Recall that

$$
\begin{aligned}
\widehat{\beta} & =\sum \frac{\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\left(x_{i}-\bar{x}\right)^{2}} \\
\widehat{\alpha} & =\bar{y}-\widehat{\beta} \bar{x} \\
\text { and } \sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & =\sum x_{i} y_{i}-n \overline{x y} \\
\sum\left(x_{i}-\bar{x}\right)^{2} & =\sum x_{i}^{2}-n \bar{x}^{2}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \widehat{\beta}=\frac{30}{60}=0.5 \\
& \widehat{\alpha}=\frac{440}{22}-0.5 \times \frac{220}{22}=15
\end{aligned}
$$

(b) R^{2} is defined as the ratio of the explained sum of squares(ESS) to total sum of squares(TSS).

$$
R^{2}=\frac{\widehat{\beta}^{2} \sum\left(x_{i}-\bar{x}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}=\widehat{\beta}^{2} \frac{\sum x_{i}^{2}-n \bar{x}^{2}}{\sum y_{i}^{2}-n \bar{y}^{2}}=0.5^{2} \times \frac{60}{8900-22 \times 20^{2}}=0.15
$$

(c) By the normality assumption, we know that

$$
\widehat{\beta} \sim N\left(\beta, \frac{\sigma^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right)
$$

Moreover,

$$
\frac{(n-2) S^{2}}{\sigma^{2}} \sim \chi^{2}(n-2)
$$

where $\mathrm{S}^{2}=\frac{1}{n-2} \sum e_{i}^{2}$. We can also show that $\widehat{\beta}$ and S^{2} are independent each other. Then,

$$
\frac{\frac{\widehat{\beta}-\beta}{\sqrt{\frac{\sigma^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}}}}{\sqrt{\frac{(n-2) S^{2}}{\sigma^{2}}}}=\frac{\widehat{\beta}-\beta}{\frac{S}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}}}} \sim t(n-2)
$$

We want to reject the null hypothesis if

$$
t=\left|\frac{\widehat{\beta}-\beta}{\frac{S}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}}}}\right|>t_{0.975}(20)
$$

under the null hypothesis. On the other hand,

$$
\begin{aligned}
S^{2} & =\frac{1}{n-2} \sum e_{i}^{2}=\frac{1}{n-2} \sum\left(y_{i}-\widehat{\alpha}-\widehat{\beta} x_{i}\right)^{2} \\
& =\frac{1}{n-2} \sum\left(y_{i}^{2}+\widehat{\alpha}^{2}+\widehat{\beta}^{2} x_{i}^{2}-2 \widehat{\alpha} y_{i}+2 \widehat{\alpha} \widehat{\beta} x_{i}-2 \widehat{\beta} x_{i} y_{i}\right)^{2} \\
& =4.25
\end{aligned}
$$

Hence, the test statistics is given by

$$
t=\left|\frac{0.5-0}{\sqrt{\frac{4.25}{60}}}\right|=1.8787
$$

Since $t_{0.975}(20)=2.086$, we cannot reject the null hypothesis.
5. i)

$$
\begin{aligned}
b_{1}= & \left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1} X_{1}^{\prime} M_{2} y \\
= & \left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1} X_{1}^{\prime} M_{2}\left(X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon\right) \\
= & \left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1} X_{1}^{\prime} M_{2} X_{1} \beta_{1}+\left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1} X_{1}^{\prime} M_{2} X_{2} \beta_{2} \\
& +\left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1} X_{1}^{\prime} M_{2} \varepsilon \\
= & \beta_{1}+0+\left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1} X_{1}^{\prime} M_{2} \varepsilon
\end{aligned}
$$

Take expectation.

$$
\begin{aligned}
E\left(b_{1}\right) & =\beta_{1}+E\left[\left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1} X_{1}^{\prime} M_{2} \varepsilon\right] \\
& =\beta_{1}+\left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1} X_{1}^{\prime} M_{2} E[\varepsilon] \\
& =\beta_{1}+\left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1} X_{1}^{\prime} M_{2} X_{1} \gamma \\
& =\beta_{1}+\gamma
\end{aligned}
$$

Therefore, b_{1} is biased.
ii)

$$
\begin{aligned}
b_{2}= & \left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} y \\
= & \left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1}\left(X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon\right) \\
= & \left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} X_{1} \beta_{1}+\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} X_{2} \beta_{2} \\
& +\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} \varepsilon \\
= & 0+\beta_{2}+\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} \varepsilon
\end{aligned}
$$

Take expectation.

$$
\begin{aligned}
E\left(b_{2}\right) & =\beta_{2}+\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} E(\varepsilon) \\
& =\beta_{2}+\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} X_{1} \gamma \\
\text { (Note } & \left.: M_{1} X_{1}=0\right) \\
& =\beta_{2}+0 \\
& =\beta_{2}
\end{aligned}
$$

Therefore, b_{2} is unbiased.
6. Let A be a orthogonal projection matrix onto the space spanned by a column of ones.
(a) $R^{2}=R_{1}^{2}=R_{2}^{2}=\frac{\left(x^{\prime} A y\right)^{2}}{\left(x^{\prime} A x\right)\left(y^{\prime} A y\right)}$
(b) $\widehat{\beta}_{1}=\frac{x^{\prime} A y}{x^{\prime} A x}, \widehat{\beta}_{2}=\frac{x^{\prime} A y}{y^{\prime} A y}$, and we have $\widehat{\beta}_{1} \widehat{\beta}_{2}=R^{2}$
(c) From $\widehat{\beta}_{1}=\frac{x^{\prime} A y}{x^{\prime} A x}$ and $R^{2}=1-\frac{e^{\prime} e}{y^{\prime} A y}$, we have
$t_{1}=\frac{\widehat{\beta}_{1}}{\sqrt{\left(x^{\prime} A x\right)^{-1}\left(e_{1}^{\prime} e_{1}^{\prime}\right) /(n-2)}}=\frac{x^{\prime} A y}{\sqrt{\left(x^{\prime} A x\right)\left(y^{\prime} A y\right)\left(1-R^{2}\right) /(n-2)}}$
Note that x and y are symmetric in the above formula. This proves $t_{1}=t_{2}$.

