Cornell University Department of Economics

Econ 620 – Spring 2008 Instructor: Professor Kiefer TA: Jae Ho Yun

Problem Set #5

(Due: April 18, Friday)

1. (Final 2002) You are interested in estimating a salary equation for professional horn players(sadly, there aren't many of these). Your specification is

$$y_i = x_i'\beta + \delta t_i + \varepsilon_i$$

where y_i is the log wage, x includes observed individual characteristics (years at Eastman School of Music, years in new orleans...) and t is talent. Unfortunately, you do not observe talent, but you observe an indiciation of talent, a score in a recent contest of horn players, t^* . You are also lucky enough to have some observable characteristics not included in the x, namely z.

- (a) Is OLS regression of y on x and t^* appropriate?
- (b) Give an alternative estimator.
- (c) how would you test whether OLS is appropriate, or whether some alternative technique is required?
- 2. Probit: Your dependent variables are indicators d_i , (0 or 1) and your model is $Pr(d_i = 1) = \Phi(x_i\beta)$ is a scalar. Suppose you fit this model by nonlinear least squares.
 - (a) How to get NLS estimator? Describe the procedure.
 - (b) What is the variance of d_i conditioning on x_i ?
 - (c) Suppose you use your estimator from a and your formula from b to "correct" for heteroskedasticity and rerun your nonlinear least squares. Is your second-round estimator "better" than your firstround estimator from a)? In what sense?
 - (d) We know that Maximum likelihood is the most efficient. How to get ML estimator? Describe the procedure.
- 3. (Final 2003) Consider one equation in a simultaneous system:

$$y_1 = Y_2 \gamma + X_1 \beta + \varepsilon$$
$$= Z\delta + \varepsilon$$

where X_1 is the $N \times K_1$ matrix of included exogenous variables. Let X be the $N \times K$ matrix of all the exogenous variables throughout the system. You decide to fit the model by 2SLS and hence construct \hat{Y}_2 (a. How?) and do the second state regression to obtain your coefficient $\hat{\delta}$. Upon thinking things over, you decide that if instruments are good for Y_2 , they are probably good for y_1 as well. You find \hat{y}_1 (the same way you found \hat{Y}_2) and regress \hat{y}_1 on \hat{Y}_2 and X_1 to obtain the coefficient vector $\hat{\delta}^*$. b) Show that $\hat{\delta} = \hat{\delta}^*$.

- 4. (Final 2007) Consider the equation $y = X_1\beta + Y\gamma + \varepsilon$ where X_1 is $k_1 \times N$ and Y is $G \times N$. Y is potentially endogenous and you have a $k \times N$ matrix of instruments X, which includes X_1 . Write the equation $y = Z\delta + \varepsilon$.
 - (a) What is the minimum value of k needed to identify δ ? Now assume that Y is not actually endogenous.
 - (b) What is the asymptotic variance of the OLS estimator $\hat{\delta}$?
 - (c) What is the IV estimator $\hat{\delta}_{IV}$ and its asymptotic variance?
 - (d) What is the asymptotic variace of $\hat{\delta}_{IV} \hat{\delta}$?
 - (e) What is the rank of this covariance matrix?
 - (f) What is the asymptotic covariance between $\hat{\delta}$ and $\hat{\delta}_{IV} \hat{\delta}$?
- 5. Consider the system

$$y_1 = \alpha_1 + \beta_1 x + \gamma y_2 + \varepsilon_1 \tag{1}$$

$$y_2 = \alpha_2 + \beta_2 f(x) + \varepsilon_2 \tag{2}$$

where the errors are jointly normally distribute with mean zero and covariance matrix V. Investigate the identification of equation 1, when a) f(x) = 1 + x; (b) $f(x) = 1 + x + x^2$; (c) $f(x) = 1 + \exp(x)$. How could you estimate the model?

- 6. (Final 2006) You specify a linear regression model $Ey = X\beta$. Oddly, your X matrix is $n \times 2$ with the pattern $x_i = (1 \ 0)$ for i odd and $(0 \ 1)$ for i even. You have neglected to include a constant term. Assume $E(\varepsilon) = 0$ and $V(\varepsilon) = I_n$.
 - (a) What are the variances and covariance of the OLS estimator for β ?
 - (b) You have read an article about GMM and now conclude that OLS is for wimps. After some experimentation, you realize that the moment condition $E(y - X\beta) = 0$, with empirical counterpart $n^{-1}\sum(y_i - x_i\beta)$ isn't going to get you very far. So, you split the sample into two groups, odd and even observations and solve two equations, $(n_{even})^{-1}\sum(y_i - x_i\beta)$ and $(n_{odd})^{-1}\sum(y_i - x_i\beta)$ (the sums are over the observations in each of the groups) for each of the two groups, to get estimators β^* . Compare the variance of β^* with that of the OLS estimator.