Cornell University Department of Economics

Econ 620 – Spring 2008 Instructor: Professor Kiefer TA: Jae Ho Yun

Problem Set #4

(Due: April 8, Tuesday)

1. Suppose that the regression model is;

$$y = X\beta + \varepsilon$$

$$E(\varepsilon) = 0, E(\varepsilon\varepsilon') = \sigma^2 \Omega$$

Assume that Ω is known.

- (a) What is the covariance matrix of the OLS and what is the covariance matrix of the GLS estimators of β ?
- (b) What is the covariance matrix of the OLS residual vector, $e = y X \widehat{\beta}_{OLS}$?
- (c) What is the covariance matrix of the GLS residual vector, $\tilde{e} = y X \hat{\beta}_{GLS}$?
- (d) What is the covariance matrix of the OLS and the GLS residual vectors?
- 2. Find the autocorrelation function of the following processes. Then, for each process, draw the graph of ACF and guess the shape of PAC.(Refer to the Time Series Forecasting lecture note)
 - (a) $X_t = \alpha X_{t-1} + \varepsilon_t$ where $|\rho| < 1$ and $\varepsilon_t \sim i.i.d.(o, \sigma_{\varepsilon}^2)$
 - (b) $Y_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$ where $\varepsilon_t \sim i.i.d.(o, \sigma_{\varepsilon}^2)$
- 3. The following model is specified:

$$\begin{array}{rcl} y_1 & = & \gamma_1 y_2 + \beta_{11} x_1 + \varepsilon_1 \\ y_2 & = & \gamma_2 y_1 + \beta_{22} x_2 + \beta_{32} x_3 + \varepsilon_2 \end{array}$$

All variables are in measured in deviations from their means. The sample of 25 observations produces the following matrix of sum of squares and cross products:

	y_1	y_2	x_1	x_2	x_3
y_1	20	6	4	3	5
y_2	6	10	3	6	7
x_1	4	3	5	2	3
x_2	3	6	2	10	8
x_3	5	7	3	8	15

- (a) Estimate the two equations by OLS.
- (b) Estimate the parameters of the two equations by 2SLS.
- 4. The following model is specified:

$$\begin{array}{rcl} y_1 & = & \gamma_1 y_2 + \beta_{11} x_1 + \beta_{12} x_2 + \beta_{13} x_3 + \varepsilon_1 \\ y_2 & = & \gamma_2 y_1 + \beta_{21} x_1 + \beta_{22} x_2 + \beta_{23} x_3 + \varepsilon_2 \end{array}$$

The error terms have both expectation zero. We consider only exclusion restrictions. Using the order and rank conditions, verify whether the model is identified under the following restrictions:

(a)
$$\beta_{12} = \beta_{13} = \beta_{21} = 0$$

(b) $\beta_{11} = \beta_{12} = \beta_{13} = 0$
(c) $\beta_{13} = \beta_{22} = 0$

- (d) $\beta_{11}=\beta_{12}=0$
- 5. (2005 Final) You have a regression model $y_i = \alpha + \beta x_i + \varepsilon_i$ where x is either 0 or 1. In an attempt to simplify your estimation problem, you calculate \overline{y}_0 and \overline{y}_1 , wher these are the sample means corresponding to observations with x=0 and x=1 respectively. Then you calculate α^* and β^* by \overline{y}_0 and $\overline{y}_1 \overline{y}_0$. Are your estimators unbiased? Consistent? Efficient(minimum variance unbiased)?