Cornell University Department of Economics

Econ 620 – Spring 2008 Instructor: Professor Kiefer

Problem Set # 3 (Due: Tuesday, March 3rd in Class)

- 1. You have a sample from a Bernoulli process, that is a sample of n observations $d_i = 1$ if the observation is a success, $d_i = 0$ otherwise. The probability of a success is θ , which is the parameter you wish to estimate. Thus, the distribution of d_i is $\theta^d \theta^{1-d}$.
 - (a) What are the loglikelihood function, the score, the information, and the expected information?
 - (b) What is the maximum likelihood estimator and its approximate (asymptotic) variance?
 - (c) Describe how you would test $H_0: \theta = \theta_0$ vs. $H_A: \theta \neq \theta_0$ where $\theta_0 \in (0, 1)$?
- 2. For the model $y_i = \alpha + \varepsilon_i$ with $E(\varepsilon_i) = 0$, $E(\varepsilon_i \varepsilon_j) = 0$ for $i \neq j$ and $= \sigma^2 x_i$ for i = j where x_i are observed positive scalars, find the best linear unbiased estimator for α and give its variance.
- 3. Consider the classical multiple regression model

Model I:
$$y = X\beta + \varepsilon = X_1\beta_1 + X_2\beta_2 + \varepsilon$$

where X_1 is an $N \times k_1$ matrix and X_2 is an $N \times k_2$ matrix with $k_1 + k_2 = k$ and the vector β is partitioned conformably. Now you are given another model such that

Model II:
$$M_2 y = M_2 X_1 \beta_1 + \varepsilon$$

where $M_2 = I - X_2(X'_2X_2)^{-1}X'_2$. Show that the least squares estimator for β_1 from Model I is identical to that from Model II.

4. For the standard normal regression model;

$$y = X\beta + \varepsilon, \ \varepsilon \sim N(0, \sigma^2 I)$$

- (a) Write down the log-likelihood function. And find MLE for β and σ^2 .
- (b) Find the asymptotic distribution of MLE.

(c) Prove that

$$E(-\frac{\partial^2 Log L}{\partial \beta \partial \beta'}) = E([\frac{\partial Log L}{\partial \beta}][\frac{\partial Log L}{\partial \beta'}]')$$

5. Consider the following regression model;

$$y = X\beta + \varepsilon, \ \varepsilon \sim N(0, \sigma^2 I)$$

with $E(\varepsilon) = 0, E(\varepsilon \varepsilon') = \sigma^2 I$. Three potential linear estimations for β are

$$\widehat{\beta} = (X'X)^{-1}X'y
\widetilde{\beta} = \widehat{\beta} + N^{-1}1
\overline{\beta} = \widehat{\beta} + N^{-\frac{1}{2}}1$$

where 1 is a $k \times 1$ vector of ones.

- (a) Which of these are unbiased?
- (b) Which are consistent?
- (c) What are the asymptotic distributions of $\sqrt{N}(\hat{\beta} \beta), \sqrt{N}(\tilde{\beta} \beta),$ and $\sqrt{N}(\bar{\beta} - \beta)$?
- 6. Suppose $x_i, i = 1, 2, \cdots$ is a sequence of independent random variables where each x_i is uniformly distributed with density

$$f(x_i) = 1_{1[0 \le x_i < 1]}$$
 for all *i*

- (a) Find $p \lim \frac{1}{n} \sum_{i=1}^{n} x_i$, $p \lim \frac{1}{n} \sum_{i=1}^{n} x_i^2$ and $p \lim \frac{1}{n} \sum_{i=1}^{n} x_i^3$
- (b) Suppose $x'_i s$ are as above and $y_i = x_i^2 + \varepsilon_i$ with ε_i independent of x_i and $E(\varepsilon_i) = 0$, $Var(\varepsilon_i) = \sigma^2$. You run the regression $Ey_i = \alpha + \beta x_i$. Find $p \lim \hat{\alpha}$ and $p \lim \hat{\beta}$ where $\hat{\alpha}$ and $\hat{\beta}$ are the least squares estimators.