Cornell University
 Department of Economics

Econ 620 - Spring 2008
Instructor: Professor Kiefer

Problem Set \# 3

(Due: Tuesday, March 3rd in Class)

1. You have a sample from a Bernoulli process, that is a sample of n observations $d_{i}=1$ if the observation is a success, $d_{i}=0$ otherwise. The probability of a success is θ, which is the parameter you wish to estimate. Thus, the distribution of d_{i} is $\theta^{d} \theta^{1-d}$.
(a) What are the loglikelihood function, the score, the information, and the expected information?
(b) What is the maximum likelihood estimator and its approximate (asymptotic) variance?
(c) Describe how you would test $H_{0}: \theta=\theta_{0}$ vs. $H_{A}: \theta \neq \theta_{0}$ where $\theta_{0} \in(0,1)$?
2. For the model $y_{i}=\alpha+\varepsilon_{i}$ with $E\left(\varepsilon_{i}\right)=0, E\left(\varepsilon_{i} \varepsilon_{j}\right)=0$ for $i \neq j$ and $=\sigma^{2} x_{i}$ for $i=j$ where x_{i} are observed positive scalars, find the best linear unbiased estimator for α and give its variance.
3. Consider the classical multiple regression model

$$
\text { Model I: } y=X \beta+\varepsilon=X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon
$$

where X_{1} is an $N \times k_{1}$ matrix and X_{2} is an $N \times k_{2}$ matrix with $k_{1}+k_{2}=k$ and the vector β is partitioned conformably. Now you are given another model such that

Model II: $M_{2} y=M_{2} X_{1} \beta_{1}+\varepsilon$
where $M_{2}=I-X_{2}\left(X_{2}^{\prime} X_{2}\right)^{-1} X_{2}^{\prime}$. Show that the least squares estimator for β_{1} from Model I is identical to that from Model II.
4. For the standard normal regression model;

$$
y=X \beta+\varepsilon, \varepsilon \sim N\left(0, \sigma^{2} I\right)
$$

(a) Write down the log-likelihood function. And find MLE for β and σ^{2}.
(b) Find the asymptotic distribution of MLE.
(c) Prove that

$$
E\left(-\frac{\partial^{2} \log L}{\partial \beta \partial \beta^{\prime}}\right)=E\left(\left[\frac{\partial \log L}{\partial \beta}\right]\left[\frac{\partial \log L}{\partial \beta^{\prime}}\right]^{\prime}\right)
$$

5. Consider the following regression model;

$$
y=X \beta+\varepsilon, \varepsilon \sim N\left(0, \sigma^{2} I\right)
$$

with $E(\varepsilon)=0, E\left(\varepsilon \varepsilon^{\prime}\right)=\sigma^{2} I$. Three potential linear estimatiors for β are

$$
\begin{aligned}
\widehat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y \\
\widetilde{\beta} & =\widehat{\beta}+N^{-1} 1 \\
\bar{\beta} & =\widehat{\beta}+N^{-\frac{1}{2}} 1
\end{aligned}
$$

where 1 is a $k \times 1$ vector of ones.
(a) Which of these are unbiased?
(b) Which are consistent?
(c) What are the asymptotic distributions of $\sqrt{N}(\widehat{\beta}-\beta), \sqrt{N}(\widetilde{\beta}-\beta)$, and $\sqrt{N}(\bar{\beta}-\beta)$?
6. Suppose $x_{i}, i=1,2, \cdots$ is a sequence of independent random variables where each x_{i} is uniformly distributed with density

$$
f\left(x_{i}\right)=1_{1\left[0 \leq x_{i}<1\right]} \text { for all } i
$$

(a) Find $p \lim \frac{1}{n} \sum_{i=1}^{n} x_{i}, p \lim \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}$ and $p \lim \frac{1}{n} \sum_{i=1}^{n} x_{i}^{3}$
(b) Suppose $x_{i}^{\prime} s$ are as above and $y_{i}=x_{i}^{2}+\varepsilon_{i}$ with ε_{i} independent of x_{i} and $E\left(\varepsilon_{i}\right)=0, \operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}$. You run the regression $E y_{i}=$ $\alpha+\beta x_{i}$. Find $p \lim \widehat{\alpha}$ and $p \lim \widehat{\beta}$ where $\widehat{\alpha}$ and $\widehat{\beta}$ are the least squares estimators.

