Cornell University

Department of Economics
Econ 620 - Spring 2008
Instructor: Professor Kiefer

Problem Set \# 2

(Due : Tuesday, February 26th)

1. Suppose $X \sim N(0,1)$ (standard normal). a) what is the distribution of X^{2} ? Suppose $p \lim \left(X_{n}-X\right)=0$. b) What is the asymptotic distribution of X_{n} ? c) Suppose $Y_{n}=X_{n}^{2}$. What is the asymptotic distribution of Y_{n} ?
2. Let $\mathrm{Z}=[\mathrm{y} \mathrm{X}]$ where the i th row of X is $\left(1 \mathrm{x}_{i}\right)$ and

$$
Z^{\prime} Z=\left(\begin{array}{ccc}
760 & 30 & 1300 \\
30 & 31 & 0 \\
1300 & 0 & 2480
\end{array}\right)
$$

Naturally, you regress y on X. Calculate the slop coefficient in the regression.

$$
E y=\alpha+\beta x
$$

What is the mean of x ? What is the sample size? What is the R^{2} ? Calculate the OLS estimator and the F-statistics for testing $\alpha=\beta=0$. Upon thinking about the problem (for the first time), you decide that the right regression is the regression of x on $\mathrm{y}: E x=\alpha^{*}+\beta^{*} y$. Calculate the slope coefficient, R^{2} and the t -statistics(for $\left.\beta^{*}\right)$. Explain.
3. You begin with the regression model $y=X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon$. For mysterious reason, you are mainly interested in β_{2}. Let $M_{1}=I-X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime}$ and $P_{1}=I-M_{1}$. Your RA, providing cover, estimating the following regressions:
(a) $y=X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon$
(b) $P_{1} y=X_{2} \beta_{2}+\varepsilon$
(c) $P_{1} y=P_{1} X_{2} \beta_{2}+\varepsilon$
(d) $M_{1} y=X_{2} \beta_{2}+\varepsilon$
(e) $y=M_{1} X_{2} \beta_{2}+\varepsilon$
(f) $M_{1} y=M_{1} X_{2} \beta_{2}+\varepsilon$
(g) $M_{1} y=X_{1} \beta_{1}+M_{1} X_{2} \beta_{2}+\varepsilon$
(h) $M_{1} y=M_{1} X_{1} \beta_{1}+M_{1} X_{2} \beta_{2}+\varepsilon$
giving you a number of estimates of β_{2}. What models (among b) ${ }^{\sim}$ h)) give you the same $\widehat{\beta_{2}}$ as that of a)? Explain.
4. Suppose that you have two independent unbiased estimators, say b_{1} and b_{2} of the same parameter β with different variances, say V_{1} and V_{2} respectively. What linear combination $b=c_{1} b_{1}+c_{2} b_{2}$ is the minimum variance unbiased estimator of β ?
5. Stochastic Regressors:

Consider the model $y=X \beta+\varepsilon$. Let b be the OLS estimator of β. We will only relax the assumption that X is the matrix of constants; now the regressors are random variables, but uncorrelated with the error term.
(a) Find the unconditional expectation of b . Is b unbiased?

Hint: We know that $b=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon$. First, find the conditional expectation of b (this is straightforward: $E[b \mid X]=\beta+$ $\left.\left(X^{\prime} X\right)^{-1} X^{\prime} E[\varepsilon \mid X]\right)$. Then, use the law of iterated expectations.
(b) Find the unconditional variance of b and show that $\operatorname{Var}(b)=\sigma^{2} E\left[\left(X^{\prime} X\right)^{-1}\right]$.

Hint: Use the decomposition
$\operatorname{Var}(b)=E_{X}[\operatorname{Var}(b \mid X)]+\operatorname{Var}_{X} E[b \mid X]$.
6. Suppose that

$$
\begin{aligned}
& X_{n}=3-\frac{1}{n^{2}} \\
& Y_{n}=\sqrt{n} \frac{\frac{n_{n}}{\sigma}}{2}
\end{aligned}
$$

where $\overline{Z_{n}}=\frac{1}{n} \sum_{i=1}^{n} Z_{i}$ and Z_{i} 's are i.i.d. with mean zero and variance σ^{2}.Find the limiting distribution of
a) $X_{n}+Y_{n}$
b) $X_{n} Y_{n}$
c) Y_{n}^{2}
7. Consider the following regression model;

$$
y=X \beta+\varepsilon
$$

Assume that

$$
p \lim \frac{X^{\prime} X}{N}=Q \text { where } Q \text { is positive definite }
$$

and $E(\varepsilon)=0, E\left(\varepsilon \varepsilon^{\prime}\right)=\sigma^{2} I$. We also assume that X is non-stochastic.
(a) Prove that $\widehat{\beta} \xrightarrow{p} \beta$.
(b) Find the asymptotic distribution of $\sqrt{N}(\widehat{\beta}-\beta)$.
(c) Prove that $p \lim S^{2}=\sigma^{2}$ where $S^{2}=\frac{e^{\prime} e}{N-k}$

