Cornell University Department of Economics

Econ 620 – Spring 2008 Instructor: Professor Kiefer

Problem Set # 2

(Due : Tuesday, February 26th)

- 1. Suppose X~N(0,1) (standard normal). a) what is the distribution of X²? Suppose $p \lim(X_n - X) = 0$. b) What is the asymptotic distribution of X_n? c) Suppose $Y_n = X_n^2$. What is the asymptotic distribution of Y_n ?
- 2. Let Z = [y X] where the *i*th row of X is $(1 x_i)$ and

$$Z'Z = \left(\begin{array}{rrrr} 760 & 30 & 1300\\ 30 & 31 & 0\\ 1300 & 0 & 2480 \end{array}\right)$$

Naturally, you regress y on X. Calculate the slop coefficient in the regression.

$$Ey = \alpha + \beta x$$

What is the mean of x? What is the sample size? What is the R²? Calculate the OLS estimator and the F-statistics for testing $\alpha = \beta = 0$. Upon thinking about the problem (for the first time), you decide that the right regression is the regression of x on y: $Ex = \alpha^* + \beta^* y$. Calculate the slope coefficient, R² and the t-statistics(for β^*). Explain.

- 3. You begin with the regression model $y = X_1\beta_1 + X_2\beta_2 + \varepsilon$. For mysterious reason, you are mainly interested in β_2 . Let $M_1 = I X_1(X'_1X_1)^{-1}X'_1$ and $P_1 = I M_1$. Your RA, providing cover, estimating the following regressions:
 - (a) $y = X_1\beta_1 + X_2\beta_2 + \varepsilon$
 - (b) $P_1 y = X_2 \beta_2 + \varepsilon$
 - (c) $P_1 y = P_1 X_2 \beta_2 + \varepsilon$
 - (d) $M_1 y = X_2 \beta_2 + \varepsilon$
 - (e) $y = M_1 X_2 \beta_2 + \varepsilon$
 - (f) $M_1 y = M_1 X_2 \beta_2 + \varepsilon$
 - (g) $M_1 y = X_1 \beta_1 + M_1 X_2 \beta_2 + \varepsilon$
 - (h) $M_1 y = M_1 X_1 \beta_1 + M_1 X_2 \beta_2 + \varepsilon$

giving you a number of estimates of β_2 . What models (among b)[~]h)) give you the same $\widehat{\beta_2}$ as that of a)? Explain.

- 4. Suppose that you have two independent unbiased estimators, say b_1 and b_2 of the same parameter β with different variances, say V_1 and V_2 respectively. What linear combination $b = c_1b_1 + c_2b_2$ is the minimum variance unbiased estimator of β ?
- 5. Stochastic Regressors:

Consider the model $y = X\beta + \varepsilon$. Let b be the OLS estimator of β . We will only relax the assumption that X is the matrix of constants; now the regressors are random variables, but uncorrelated with the error term.

- (a) Find the unconditional expectation of b. Is b unbiased?
 - Hint: We know that $b = \beta + (X'X)^{-1}X'\varepsilon$. First, find the conditional expectation of b (this is straightforward: $E[b \mid X] = \beta + (X'X)^{-1}X'E[\varepsilon \mid X]$). Then, use the law of iterated expectations.
- (b) Find the unconditional variance of b and show that $Var(b) = \sigma^2 E[(X'X)^{-1}]$. Hint: Use the decomposition

$$Var(b) = E_X[Var(b \mid X)] + Var_X E[b \mid X].$$

6. Suppose that

$$X_n = 3 - \frac{1}{n^2}$$
$$Y_n = \sqrt{n} \frac{\overline{Z_n}}{\sigma}$$

where $\overline{Z_n} = \frac{1}{n} \sum_{i=1}^{n} Z_i$ and Z_i 's are i.i.d. with mean zero and variance σ^2 . Find the limiting distribution of

a)
$$X_n + Y_n$$
 b) $X_n Y_n$ c) Y_n^2

7. Consider the following regression model;

$$y = X\beta + \varepsilon$$

Assume that

$$p \lim \frac{X'X}{N} = Q$$
 where Q is positive definite

- and $E(\varepsilon) = 0, E(\varepsilon \varepsilon') = \sigma^2 I$. We also assume that X is non-stochastic.
- (a) Prove that $\widehat{\beta} \xrightarrow{p} \beta$.
- (b) Find the asymptotic distribution of $\sqrt{N}(\hat{\beta} \beta)$.
- (c) Prove that $p \lim S^2 = \sigma^2$ where $S^2 = \frac{e'e}{N-k}$