Cornell University
 Department of Economics

Econ 620 - Spring 2008
Instructor: Professor Kiefer

Problem Set \# 1

(Due : February 19)

1. Suppose the conditional expectation function is $E\left(y_{i} \mid x_{i}\right)=\beta_{0}+\beta_{1} x_{i}+$ $\beta_{2} x_{i}^{2}$. However, I run a regression on constant and x_{i} only. What is the conditional expectation of $\widehat{\beta}_{1}$, that is, $E\left(\widehat{\beta}_{1} \mid x\right)$? Is this unbiased for β_{1} ? In addition, compute the conditional variance of $\widehat{\beta}_{1}, \operatorname{Var}\left(\widehat{\beta}_{1} \mid x\right)$.
2. (Final 2003) Let $y \sim N(0,1)$. Consider the bivariate distribution of y and $\mathrm{z}=\mathrm{a}^{*} \mathrm{y}$ for some scalar a . What is the correlation between y and z ? What is the support of the joint distribution of y and $z\left(\right.$ the set in \mathbb{R}^{2} with positive density)? Give a sketch of this set in \mathbb{R}^{2}. Now consider the random variable $x=y^{2}$. What is the correlation between y and x ? What is the support of the joint distribution of y and x ? Sketch. Interprete briefly and intelligently, with attention to the interpretation of goodness of fit statistics in regression.
3. (Midterm 2001) Consider the simple regression model with no intercept $y_{i}=\beta x_{i}+\varepsilon_{i}(i=1,2)$ and suppose that the true value of β is 1 and the values of x realized in your sample are $x_{1}=1$ and $x_{2}=2$. The distribution of ε is given by $P(\varepsilon=-1)=P(\varepsilon=1)=\frac{1}{2}$, and the ε_{i} are independent.
(a) Does this model satisfy the requirement for OLS(ordinary least wquares) to be BLUE? (You don't need to provide a proof here)
(b) Calculate the exact distribution of the OLS estimator.
(c) Consider the alternative estimator $\beta^{*}=\frac{\Sigma y}{\Sigma x}$ and calculate its exact distribution. Is it unbiased?
(d) Compare the exact variances of the OLS estimator and β^{*}. Which one is smaller?
4. Suppose that we have the following information:

$$
\begin{gathered}
n=22, \quad \sum_{i} x_{i}=220, \quad \sum_{i} y_{i}=440 \\
\sum_{i} x_{i}^{2}=2260, \sum_{i} y_{i}^{2}=8900, \sum_{i} x_{i} y_{i}=4430
\end{gathered}
$$

(a) Compute the OLS estimators of α and β in the model

$$
y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}
$$

where $E\left(\varepsilon_{i}\right)=0, V\left(\varepsilon_{i}\right)=\sigma^{2}$, and $E\left(\varepsilon_{i} \varepsilon_{j}\right)=0$ when $i \neq j$.
(b) Compute the R^{2}.
(c) Assume now that the errors are normally distributed. Test the following hypothesis at the 5% significance level:

$$
H_{0}: \beta=0, H_{A}: \beta \neq 0
$$

(d) Test the following hypothesis at the 10% significance level:

$$
H_{0}: \alpha-\beta=10, H_{A}: \alpha-\beta \neq 10
$$

5. (University of Michigan, 1981) Let the regression equation be partitioned as $y=X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon$. Let b_{1} and b_{2} be the ususal least-squares estimator. Suppose that $E(\varepsilon)=X_{1} \gamma$, that is, the mean vector of the disturbances is a linear combination of some of the regressors. Prove that b_{1} is biased but b_{2} is unbiased.
6. (Midterm 2006) You devise a clever economic theory leading to a simple regression, which you fit: $y=\widehat{\alpha}_{1}+\widehat{\beta}_{1} x$. Your fit is good(high R_{1}^{2}, big t -statistics, t_{1}). Later that evening you have a flash of inspiration: perhaps you also have some doubt about whether you derived your equaiton correctly. Consequently, you fit $x=\widehat{\alpha}_{2}+\widehat{\beta}_{2} y$, again finding satisfactory results((high R_{2}^{2} and $\left.t_{2}\right)$ and confirming your doubts. The next morning you think this is through. What are the relationships between: a) R_{1}^{2} and R_{2}^{2} ? b) $\widehat{\beta}_{1}$ and $\widehat{\beta}_{2}$? c) t_{1} and t_{2} ?
