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1. First, denote the parameter estimators from the unrestricted model (yi =
� + �xi + �i) by b�; b�; b�2; and bS2 (b�2 = b�0b�

N ;
bS2 = b�0b�

N�2 ): Similarly, the

estimators from the restricted one (yi = �xi+�i) are e�; e�; e�2; and eS2(e�2 =e�0e�
N ;
eS2 = e�0e�

N�1 ):

(a) F-statistics:
Note that R=(1 0) and r=0. F-statistics is same as the square of
t-statistics for b� since the number of restriction is one in this case.

F (1; N � 2) =

0@ b�bSq(X 0X)
�1
(1;1)

1A2

whereX =

264 1 x1
...

...
1 xN

375 ; and (X 0X)
�1
(1;1) is (1,1)th element of (X

0X)
�1

matrix, which is
P
x2i

N
P
x2i�(

P
xi)

2 :

(b) Wald-statistics:

The Wald statistics is same as the F-statistics except that bS is re-
placed by b�2, and the statistics follows �2(1) under the null hypoth-
esis.

Wald statistics =

0@ b�b�q(X 0X)
�1
(1;1)

1A2

� �2(1):

(c) Score-statistics:
Score statistics is

1

N
S00i

�1
o So � �2(1):
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After taking derivative of log likelihood function and evaluating it at
the restricted estimator, we can have

S0 =

24 1e�2 Pe�i
1e�2 Pe�ixi

�N
2
1e�2 +P e�2

2e�4

35 =
24 1e�2 Pe�i

0
0

35 :
The inverse of information matrix evaluated at the restricted esti-
mator (In fact, the matrix below is 2�2 upper-left submatrix of the
inverted information matrix) is

i�1o = Ne�2(X 0X)�1:

Hence, the resulting score statistics is

Score statistics =
1e�2
�Xe�i�2 (X 0X)�1(1;1) � �

2(1):

Also, after some manipulation, we can show that the score statistics
is same as 0@ b�e�q(X 0X)

�1
(1;1)

1A2

;

which replace b� by e� in the Wald statistics formula.
(d) Likelihood ratio:

2(l(b�; b�; b�2)� l(e�; e�; e�2));
where

l(b�; b�; b�2) = �N
2
ln(2�b�2)� 1

2b�2b�0b�; and
l(e�; e�; e�2) = �N

2
ln(2�e�2)� 1

2e�2e�0e�:
Using b�2 = b�0b�=N and e�2 = e�0e�=N; we have

2(l(b�; b�; b�2)� l(e�; e�; e�2)) = N ln e�2b�2
!
;

which follows a chi-square distribution with degree of freedom 1.

2.

(a) Note that error term �i is i.i.d. and uncorrelated with the explanatory
variable, xi for each i: Clearly, the OLS estimator is unbiased, and
the BLUE (Best Linear Unbiased Estimator).
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(b) Find 2 di¤ererent yi values for xi = 1, call the largest yh(1) (and
note that the lower is yl(1) = yh(1) � 3); similarly obtain yh(0):
Then, � = yh(0) � 2 and � = yh(1) � 2 � �: Since these � and �
are true values, they are unbiased, consistent. Furthermore, their
variances are all zero.

(c) Even though the OLS is the best unbiased linear estimator, it may
give the very unlikely estimator. It�s because the error term has a
very special structure, where it can take a value from the �nite set.
Note that the OLS is the best among the "linear" unbiased estimator.
However, the method used in the part (b) is not a linear method.

3.

(a) By taking log, we can have a following model:

log yi = log � + log xi + log �i; i = 1; : : : ; N:

=) log
yi
xi
= log � + log �i:

The last is the model where the constant is the only explanatory
variable. Note that E(log �i) 6= 0: We can estimate the model by
the usual OLS, obtain the estimator for log � + E(log �i) (call thisb); and again obtain a consistent estimator for � by transformation,
exp(b � E(log �i)): We know that E(log �i) is approximately �0:577
(Euler�s number) as given in the above.

(b) Distribution of Y for each observation is as follows:

Pr(Yi � yi) = Pr(xi��i � yi) = Pr(� �
yi
xi�

) = 1� e�
yi
xi� :

Since the density is the �rst derivative of CDF, the density for y is

f(yi) =
1

xi�
e
� yi
xi� :

Let us construct the loglikelihood function:

l(�) =
NX
i=1

log f(yi) =
NX
i=1

�
� lnxi� �

yi
�xi

�
:

The score function is

@l(�)

@�
=

NX
i=1

�
� 1
�
+

yi

�2xi

�
:

The MLE for � that makes the above zero is b�ML =
1
N

PN
i=1

yi
xi
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The expected hessian (for individual observation), j0; is

E

�
1

N

@2l(�)

@�2

�
= E

 
1

N

NX
i=1

�
1

�2
� 2 yi

�3xi

�!

= E

 
1

N

NX
i=1

�
1

�2
� 2xi��i

�3xi

�!

=
1

N

NX
i=1

�
1

�2
� 2 1

�2

�
= � 1

�2

Note that E(�i) = 1: Therefore, the information matrix i0 is 1
�20
by

i0 = �j0:
The resulting asymptotic distribution of b� is as follows:

p
N(b� � �0) d�! N(0; �20):
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