Cornell University

Department of Economics
Econ 620 - Spring 2007
Instructor: Professor Kiefer
TA: Jae Ho Yun

Suggested Solutions
 for Midterm Exam 2007

1. We have to estimate the following model:

$$
\begin{aligned}
{\left[\begin{array}{c}
y \\
y^{*}
\end{array}\right] } & =\left[\begin{array}{c}
X \\
X^{*}
\end{array}\right] \beta+\left[\begin{array}{c}
\varepsilon \\
\varepsilon^{*}
\end{array}\right] \\
\text { where } \varepsilon & \sim N\left(0, \sigma^{2} I_{N}\right), \quad \varepsilon^{*} \sim N\left(0, I_{n_{0}}\right)
\end{aligned}
$$

(a) Is $\widetilde{\beta}$ linear?

$$
\begin{aligned}
\widetilde{\beta} & =\left(\left[\begin{array}{c}
X \\
X^{*}
\end{array}\right]^{\prime}\left[\begin{array}{c}
X \\
X^{*}
\end{array}\right]\right)^{-1}\left[\begin{array}{c}
X \\
X^{*}
\end{array}\right]^{\prime}\left[\begin{array}{c}
y \\
y^{*}
\end{array}\right] \\
& =\left(X^{\prime} X+X^{* \prime} X^{*}\right)^{-1}\left(X^{\prime} y+X^{* \prime} y^{*}\right) \\
& =\left(X^{\prime} X+X^{* \prime} X^{*}\right)^{-1} X^{\prime} y+\left(X^{\prime} X+X^{* \prime} X^{*}\right)^{-1} X^{* \prime} y^{*}
\end{aligned}
$$

Since $\widetilde{\beta}$ can be represented by $\widetilde{\beta}=A y+B$ (for some matrix A and B), $\widetilde{\beta}$ is affine in y. Strictly speaking, we can say that this is linear in y, only if $B=0$.
(grading policy: If you pointed out that $\widetilde{\beta}$ does not involve nonlinear functions of y, then you would be given a full credit even if you said $\widetilde{\beta}$ is linear in y.)
(b) Is $\widetilde{\beta}$ unbiased?

$$
\begin{aligned}
\widetilde{\beta} & =\left[X^{\prime} X+X^{* \prime} X^{*}\right]^{-1}\left[X^{\prime} y+X^{* \prime} y^{*}\right] \\
& =\left[X^{\prime} X+X^{* \prime} X^{*}\right]^{-1}\left[X^{\prime}(X \beta+\varepsilon)+X^{* \prime}\left(X^{*} \beta_{0}+\varepsilon^{*}\right)\right] \\
& =\left[X^{\prime} X+X^{* \prime} X^{*}\right]^{-1}\left[X^{\prime} X \beta+X^{\prime} \varepsilon+X^{* \prime} X^{*} \beta_{0}+X^{* \prime} \varepsilon^{*}\right] \\
E \widetilde{\beta} & =\left[X^{\prime} X+X^{* \prime} X^{*}\right]^{-1}\left[X^{\prime} X \beta+E\left(X^{\prime} \varepsilon\right)+X^{* \prime} X^{*} \beta_{0}+E\left(X^{* \prime} \varepsilon^{*}\right)\right] \\
& =\left[X^{\prime} X+X^{* \prime} X^{*}\right]^{-1}\left[X^{\prime} X \beta+X^{* \prime} X^{*} \beta_{0}\right]
\end{aligned}
$$

Hence, generally $\widetilde{\beta}$ is biased unless β_{0} is same as β by sheer luck.
(c) sampling variance of $\widetilde{\beta}$

$$
\begin{aligned}
\widetilde{\beta}-E \widetilde{\beta}= & {\left[X^{\prime} X+X^{* \prime} X^{*}\right]^{-1}\left[X^{\prime} X \beta+X^{\prime} \varepsilon+X^{* \prime} X^{*} \beta_{0}+X^{* \prime} \varepsilon^{*}\right] } \\
& -\left[X^{\prime} X+X^{* \prime} X^{*}\right]^{-1}\left[X^{\prime} X \beta+X^{* \prime} X^{*} \beta_{0}\right] \\
= & {\left[X^{\prime} X+X^{* \prime} X^{*}\right]^{-1}\left[X^{\prime} \varepsilon+X^{*} \varepsilon^{*}\right] } \\
V(\widetilde{\beta})= & E\left[(\widetilde{\beta}-E \widetilde{\beta})(\widetilde{\beta}-E \widetilde{\beta})^{\prime}\right] \\
= & E\left[\left(X^{\prime} X+X^{* \prime} X^{*}\right)^{-1}\left(X^{\prime} \varepsilon+X^{* \prime} \varepsilon^{*}\right)\left(X^{\prime} \varepsilon+X^{* \prime} \varepsilon^{* \prime}\right)^{\prime}\left(X^{\prime} X+X^{* \prime} X^{*}\right)^{-1}\right] \\
= & E\left[\left(X^{\prime} X+X^{* \prime} X^{*}\right)^{-1}\left(X^{\prime} \varepsilon \varepsilon^{\prime} X+X^{\prime} \varepsilon \varepsilon^{* \prime} X^{* \prime}+X^{* \prime} \varepsilon^{*} \varepsilon^{\prime} X+X^{* \prime} \varepsilon^{*} \varepsilon^{\prime} X\right)\right. \\
& \left.\left(X^{\prime} X+X^{* \prime} X^{*}\right)^{-1}\right] \\
= & \left(X^{\prime} X+X^{* \prime} X^{*}\right)^{-1}\left(X^{\prime} E\left(\varepsilon \varepsilon^{\prime}\right) X+X^{\prime} E\left(\varepsilon \varepsilon^{* \prime}\right) X^{* \prime}+X^{* \prime} E\left(\varepsilon^{*} \varepsilon^{\prime}\right) X+\right. \\
& \left.X^{* \prime} E\left(\varepsilon^{*} \varepsilon^{* \prime}\right) X^{*}\right)\left(X^{\prime} X+X^{* \prime} X^{*}\right)^{-1} \\
= & \left(X^{\prime} X+X^{* \prime} X^{*}\right)^{-1}\left(\sigma^{2} X^{\prime} X+X^{* \prime} X^{*}\right)\left(X^{\prime} X+X^{* \prime} X^{*}\right)^{-1}
\end{aligned}
$$

And it is well known that Covariance matrix of OLS estimator, $V(\widehat{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1}$.
(d) From b), we have the following.

$$
\begin{aligned}
\widetilde{\beta} & =\left[X^{\prime} X+X^{* \prime} X^{*}\right]^{-1}\left[X^{\prime} X \beta+X^{\prime} \varepsilon+X^{* \prime} X^{*} \beta_{0}+X^{* \prime} \varepsilon^{*}\right] \\
& =\left[\frac{X^{\prime} X}{N}+\frac{X^{* \prime} X^{*}}{N}\right]^{-1}\left[\frac{X^{\prime} X}{N} \beta+\frac{X^{\prime} \varepsilon}{N}+\frac{X^{* \prime} X^{*}}{N} \beta_{0}+\frac{X^{* \prime} \varepsilon^{*}}{N}\right]
\end{aligned}
$$

Note that $p \lim \frac{X^{\prime} X}{N}=Q, p \lim \frac{X^{* \prime} X^{*}}{N}=0$ (since n_{0} is fixed),

$$
p \lim \frac{X^{\prime} \varepsilon}{N}=0, p \lim \frac{X^{* \prime} \varepsilon^{*}}{N}=0
$$

$$
\begin{aligned}
p \lim \widetilde{\beta}= & {\left[p \lim \frac{X^{\prime} X}{N}+p \lim \frac{X^{* \prime} X^{*}}{N}\right]^{-1}\left[p \lim \frac{X^{\prime} X}{N} \beta+p \lim \frac{X^{\prime} \varepsilon}{N}\right.} \\
& \left.+p \lim \frac{X^{* \prime} X^{*}}{N} \beta_{0}+p \lim \frac{X^{* \prime} \varepsilon^{*}}{N}\right] \\
= & Q^{-1} Q \cdot \beta=\beta
\end{aligned}
$$

Therefore, $\widetilde{\beta}$ is consistent.
(e) The Asymptotic Distribution of $\widetilde{\beta}$

First, consider $\sqrt{N}(\widetilde{\beta}-\widehat{\beta})$

$$
\begin{aligned}
\sqrt{N} \widetilde{\beta}-\sqrt{N} \widehat{\beta}= & {\left[\frac{X^{\prime} X}{N}+\frac{X^{* \prime} X^{*}}{N}\right]^{-1}\left[\frac{X^{\prime} X}{\sqrt{N}} \beta+\frac{X^{\prime} \varepsilon}{\sqrt{N}}+\frac{X^{* \prime} X^{*}}{\sqrt{N}} \beta_{0}+\frac{X^{* \prime} \varepsilon^{*}}{\sqrt{N}}\right] } \\
& -\left[\frac{X^{\prime} X}{N}\right]^{-1}\left[\frac{X^{\prime} X}{\sqrt{N}} \beta+\frac{X^{\prime} \varepsilon}{\sqrt{N}}\right]
\end{aligned}
$$

Note that $p \lim \frac{X^{* \prime} X^{*}}{\sqrt{N}}=0$ and $p \lim \frac{X^{* \prime} \varepsilon^{*}}{\sqrt{N}}=0$ since n_{0} is fixed even if n goes to infinity.

$$
p \lim \sqrt{N}(\widetilde{\beta}-\widehat{\beta})=Q^{-1}\left[p \lim \frac{X^{* \prime} X^{*}}{\sqrt{N}} \beta_{0}+p \lim \frac{X^{* \prime} \varepsilon^{*}}{\sqrt{N}}\right]=0
$$

Since $p \lim \sqrt{N}(\widetilde{\beta}-\widehat{\beta})=\sqrt{N}((\widetilde{\beta}-\beta)-(\widehat{\beta}-\beta))=0, \sqrt{N}(\widetilde{\beta}-\beta)$ has the same limiting distribution as $\sqrt{N}(\widehat{\beta}-\beta)$. We know that $\sqrt{N}(\widehat{\beta}-\beta) \xrightarrow{d} N\left(0, \sigma^{2} Q^{-1}\right)$. Hence, $\sqrt{N}(\widetilde{\beta}-\beta) \xrightarrow{d} N\left(0, \sigma^{2} Q^{-1}\right)$.
(f) Write $\widetilde{\beta}$ as $A \widehat{\beta}+B \beta_{0}+C \varepsilon^{*}$

Since $\widehat{\beta}=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon$, we have $\beta=\widehat{\beta}-\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon$. Plug this into the $\widetilde{\beta}$ formula from b).

$$
\begin{aligned}
\widetilde{\beta} & =\left[X^{\prime} X+X^{* \prime} X^{*}\right]^{-1}\left[X^{\prime} X \beta+X^{\prime} \varepsilon+X^{* \prime} X^{*} \beta_{0}+X^{* \prime} \varepsilon^{*}\right] \\
& =\left[X^{\prime} X+X^{* \prime} X^{*}\right]^{-1}\left[X^{\prime} X\left(\widehat{\beta}-\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon\right)+X^{\prime} \varepsilon+X^{* \prime} X^{*} \beta_{0}+X^{* \prime} \varepsilon^{*}\right] \\
& =\left[X^{\prime} X+X^{* \prime} X^{*}\right]^{-1}\left[X^{\prime} X \widehat{\beta}-X^{\prime} \varepsilon+X^{\prime} \varepsilon+X^{* \prime} X^{*} \beta_{0}+X^{* \prime} \varepsilon^{*}\right] \\
& =\left[X^{\prime} X+X^{* \prime} X^{*}\right]^{-1} X^{\prime} X \widehat{\beta}+\left[X^{\prime} X+X^{* \prime} X^{*}\right]^{-1} X^{* \prime} X^{*} \beta_{0}+\left[X^{\prime} X+X^{* \prime} X^{*}\right]^{-1} X^{* \prime} \varepsilon^{*} \\
& \text { Therefore }, \\
A= & {\left[X^{\prime} X+X^{* \prime} X^{*}\right]^{-1} X^{\prime} X, } \\
B & =\left[X^{\prime} X+X^{* \prime} X^{*}\right]^{-1} X^{* \prime} X^{*} \\
C= & {\left[X^{\prime} X+X^{* \prime} X^{*}\right]^{-1} X^{* \prime} }
\end{aligned}
$$

2. $E y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$ $\gamma=\beta_{1}^{2}+\beta_{2}$
(a) An estimator $\widehat{\gamma}$ for γ

First, $\widehat{\beta}_{0}, \widehat{\beta}_{1}$ and $\widehat{\beta}_{2}$ can be obtained by MLE. Then, we can have a consistent estimator, $\widehat{\gamma}=\widehat{\beta}_{1}^{2}+\widehat{\beta}_{2}$ by applying Slutsky theorem.
(b) Asymptotic distribution of $\widehat{\gamma}$

First, define $\theta_{0}=\left(\beta_{00}, \beta_{10}, \beta_{20}\right)$ (true parameters) and $\widehat{\theta}=\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}, \widehat{\beta}_{2}\right)$.
We know that $\sqrt{N}\left(\widehat{\theta}-\theta_{0}\right) \xrightarrow{d} N\left(0, i\left(\theta_{0}\right)^{-1}\right)$,
where $i\left(\theta_{0}\right)=\frac{1}{\sigma^{2}} Q, Q=p \lim \left(\frac{X^{\prime} X}{N}\right)$ and X is a $N \times 3$ matrix whose columns consist of observations for $1, x_{1}$ and x_{2} respectively.
For asymptotic distribution of $\hat{\gamma}$, we can apply delta method.
Define $R\left(\beta_{0}, \beta_{1}, \beta_{2}\right)=\beta_{1}^{2}+\beta_{2}$. Then, we have:

$$
\sqrt{N}\left(\widehat{\gamma}-\gamma_{0}\right) \xrightarrow{d} N\left(0, \frac{\partial R}{\partial \theta^{\prime}}\left(\theta_{0}\right) i\left(\theta_{0}\right)^{-1} \frac{\partial R}{\partial \theta}\left(\theta_{0}\right)\right)
$$

where $\frac{\partial R}{\partial \theta^{\prime}}\left(\theta_{0}\right)=\left(0,2 \beta_{10}, 1\right)$.

Therefore, asymptotic variance of $\sqrt{N}\left(\widehat{\gamma}-\gamma_{0}\right)$ is

$$
\sigma^{2}\left(\begin{array}{lll}
0 & 2 \beta_{10} & 1
\end{array}\right) Q^{-1}\left(\begin{array}{c}
0 \\
2 \beta_{10} \\
1
\end{array}\right)
$$

(c) Test the hypothesis that $\gamma=0$

Use $L R=2\left(l(\widehat{\theta})-l\left(\bar{\theta}_{0}\right)\right), L M($ Score $)=\frac{1}{N} s\left(\bar{\theta}_{0}\right)^{\prime} i\left(\bar{\theta}_{0}\right) s\left(\bar{\theta}_{0}\right)$ or Wald $=$ $N\left(\widehat{\theta}-\theta_{0}\right)^{\prime} i(\widehat{\theta})^{-1}\left(\widehat{\theta}-\theta_{0}\right)$ with approximating distribution $\chi^{2}(1)$. Now, $\widehat{\theta}$ is unrestriced ML estimator and $\bar{\theta}_{0}$ is restricted ML estimator.
(d) Compare Wald test and Score(LM) test

First, consider the Wald statistics. It can be derived from the limiting distribution of $\sqrt{N}\left(\widehat{\gamma}-\gamma_{0}\right)$ in b) by replacing θ_{0} by $\widehat{\theta}$.
$\sqrt{N}\left(\widehat{\gamma}-\gamma_{0}\right) \xrightarrow{d} N\left(0, \frac{\partial R}{\partial \theta^{\prime}}\left(\theta_{0}\right) i\left(\theta_{0}\right)^{-1} \frac{\partial R}{\partial \theta}\left(\theta_{0}\right)\right) \approx N\left(0, \frac{\partial R}{\partial \theta^{\prime}}(\widehat{\theta}) i(\widehat{\theta})^{-1} \frac{\partial R}{\partial \theta}(\widehat{\theta})\right)$
where $\frac{\partial R}{\partial \theta^{\prime}}(\widehat{\theta})=\left(0,2 \widehat{\beta}_{1}, 1\right)$ and $i(\widehat{\theta})^{-1}=\widehat{\sigma^{2}}\left(\frac{X^{\prime} X}{N}\right)^{-1}$. Therefore, the Wald statistics is:

$$
W=N \widehat{\gamma}^{2}\left[\frac{\partial R}{\partial \theta^{\prime}}(\widehat{\theta}) i(\widehat{\theta})^{-1} \frac{\partial R}{\partial \theta}(\widehat{\theta})\right]^{-1} \sim \chi^{2}(1)
$$

Next, consider the Score statistics. For this test, we have to estimate the model under the restricstion. It will be that $y=\beta_{0}+\beta_{1} x_{1}-$ $\beta_{1}^{2} x_{2}+\varepsilon$ since $\beta_{2}=-\beta_{1}^{2}$ under the null hypothesis. Note that this is a nonlinear regression model. So, it is more difficult to estimate this kind of models than ordinary linear models. For the score statistics, plug the restricted estimators (call them $\bar{\theta}$) into score function and construct the score statistics. The resulting statistics is as follows.

$$
\text { Score }=N\left(\frac{1}{N} X^{\prime} \bar{e}\right)^{\prime} \frac{1}{\bar{\sigma}^{2}}\left[\left(\frac{1}{N} X^{\prime} X\right)^{-1}\right]\left(\frac{1}{N} X^{\prime} \bar{e}\right) \sim \chi^{2}(1)
$$

where \bar{e} is a residual vector from restricted model and $\bar{\sigma}^{2}$ is a corresponding variance estimator.(Note that $\frac{1}{\bar{\sigma}^{2}} X^{\prime} \bar{e}$ is a score function) Therefore, in our case, Wald test is more convenient to implement than the score test.
(e) Compare the tests when $\beta_{1}=\beta_{2}=0$.

In this case, Score test is easy to implement. From the Score statistics from d), \bar{e} now becomes a vector of demeaned y under the null hypothesis.

$$
\text { Score }=N\left[\frac{1}{N} X^{\prime}(y-\bar{y} \cdot 1)\right]^{\prime} \frac{1}{\bar{\sigma}^{2}}\left[\left(\frac{1}{N} X^{\prime} X\right)^{-1}\right]\left[\frac{1}{N} X^{\prime}(y-\bar{y} \cdot 1)\right] \sim \chi^{2}(2)
$$

However, for the Wald test, we have to consider two restrictions. Suppose that $R(\widehat{\theta})=\binom{\widehat{\beta}_{1}}{\widehat{\beta}_{2}} \frac{\partial R}{\partial \theta^{\prime}}(\widehat{\theta})=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $i(\widehat{\theta})^{-1}=$ $\widehat{\sigma^{2}}\left(\frac{X^{\prime} X}{N}\right)^{-1}$. All the estimators came from the unrestricted model. The Wald statistics is as follows.

$$
W=N \cdot R(\widehat{\theta})^{\prime}\left[\frac{\partial R}{\partial \theta^{\prime}}(\widehat{\theta}) i(\widehat{\theta})^{-1} \frac{\partial R}{\partial \theta}(\widehat{\theta})\right]^{-1} R(\widehat{\theta}) \sim \chi^{2}(2)
$$

Hence, in this case, score test is easy to implement.

