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1. We have to estimate the following model:
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where " � N(0; �2IN ); "

� � N(0; In0)

(a) Is e� linear?
e� =

 �
X
X�

�0 �
X
X�

�!�1 �
X
X�

�0 �
y
y�

�
= (X 0X +X�0X�)�1(X 0y +X�0y�)

= (X 0X +X�0X�)�1X 0y + (X 0X +X�0X�)�1X�0y�

Since e� can be represented by e� = Ay + B(for some matrix A and
B), e� is a¢ ne in y. Strictly speaking, we can say that this is linear
in y; only if B = 0:
(grading policy: If you pointed out that e� does not involve nonlinear
functions of y, then you would be given a full credit even if you saide� is linear in y.)

(b) Is e� unbiased?
e� = [X 0X +X�0X�]�1[X 0y +X�0y�]

= [X 0X +X�0X�]�1[X 0(X� + ") +X�0(X��0 + "
�)]

= [X 0X +X�0X�]�1[X 0X� +X 0"+X�0X��0 +X
�0"�]

Ee� = [X 0X +X�0X�]�1[X 0X� + E(X 0") +X�0X��0 + E(X
�0"�)]

= [X 0X +X�0X�]�1[X 0X� +X�0X��0]

Hence, generally e� is biased unless �0 is same as � by sheer luck.
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(c) sampling variance of e�
e� � Ee� = [X 0X +X�0X�]�1[X 0X� +X 0"+X�0X��0 +X

�0"�]

�[X 0X +X�0X�]�1[X 0X� +X�0X��0]

= [X 0X +X�0X�]�1[X 0"+X�0"�]

V (e�) = E[(e� � Ee�)(e� � Ee�)0]
= E[(X 0X +X�0X�)�1(X 0"+X�0"�)(X 0"+X�0"�)0(X 0X +X�0X�)�1]

= E[(X 0X +X�0X�)�1(X 0""0X +X 0""�0X�0 +X�0"�"0X +X�0"�"0X)

(X 0X +X�0X�)�1]

= (X 0X +X�0X�)�1(X 0E(""0)X +X 0E(""�0)X�0 +X�0E("�"0)X +

X�0E("�"�0)X�)(X 0X +X�0X�)�1

= (X 0X +X�0X�)�1(�2X 0X +X�0X�)(X 0X +X�0X�)�1

And it is well known that Covariance matrix of OLS estimator,
V (b�) = �2(X 0X)�1:

(d) From b), we have the following.

e� = [X 0X +X�0X�]�1[X 0X� +X 0"+X�0X��0 +X
�0"�]

= [
X 0X

N
+
X�0X�

N
]�1[

X 0X

N
� +

X 0"

N
+
X�0X�

N
�0 +

X�0"�

N
]

Note that p lim
X 0X

N
= Q; p lim

X�0X�

N
= 0(since n0 is �xed),

p lim
X 0"

N
= 0; p lim

X�0"�

N
= 0:

p lim e� = [p lim
X 0X

N
+ p lim

X�0X�

N
]�1[p lim

X 0X

N
� + p lim

X 0"

N

+p lim
X�0X�

N
�0 + p lim

X�0"�

N
]

= Q�1Q � � = �
Therefore, e� is consistent.

(e) The Asymptotic Distribution of e�
First, consider

p
N(e� � b�)

p
Ne� �pNb� = [

X 0X

N
+
X�0X�

N
]�1[

X 0Xp
N
� +

X 0"p
N
+
X�0X�
p
N

�0 +
X�0"�p
N
]

�[X
0X

N
]�1[

X 0Xp
N
� +

X 0"p
N
]
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Note that p lim X�0X�
p
N

= 0 and p lim X�0"�p
N

= 0 since n0 is �xed even
if n goes to in�nity.

p lim
p
N(e� � b�) = Q�1[p lim X�0X�

p
N

�0 + p lim
X�0"�p
N
] = 0

Since p lim
p
N(e� � b�) = p

N((e� � �) � (b� � �)) = 0;
p
N(e� � �)

has the same limiting distribution as
p
N(b� � �): We know thatp

N(b� � �) d! N(0; �2Q�1): Hence,
p
N(e� � �) d! N(0; �2Q�1):

(f) Write e� as Ab� +B�0 + C"�
Since b� = � + (X 0X)�1X 0"; we have � = b� � (X 0X)�1X 0":Plug this
into the e� formula from b).

e� = [X 0X +X�0X�]�1[X 0X� +X 0"+X�0X��0 +X
�0"�]

= [X 0X +X�0X�]�1[X 0X(b� � (X 0X)�1X 0") +X 0"+X�0X��0 +X
�0"�]

= [X 0X +X�0X�]�1[X 0Xb� �X 0"+X 0"+X�0X��0 +X
�0"�]

= [X 0X +X�0X�]�1X 0Xb� + [X 0X +X�0X�]�1X�0X��0 + [X
0X +X�0X�]�1X�0"�

Therefore,

A = [X 0X +X�0X�]�1X 0X;

B = [X 0X +X�0X�]�1X�0X�

C = [X 0X +X�0X�]�1X�0

2. Ey = �0 + �1x1 + �2x2


 = �21 + �2

(a) An estimator b
 for 

First, b�0; b�1 and b�2 can be obtained by MLE. Then, we can have a
consistent estimator, b
 = b�21 + b�2 by applying Slutsky theorem.

(b) Asymptotic distribution of b

First, de�ne �0 = (�00; �10; �20)(true parameters) and b� = (b�0; b�1; b�2):
We know that

p
N(b� � �0) d! N(0; i(�0)

�1);

where i(�0) = 1
�2Q; Q = p lim(

X0X
N ) and X is a N � 3 matrix whose

columns consist of observations for 1, x1 and x2 respectively.
For asymptotic distribution of b
, we can apply delta method.
De�ne R(�0; �1; �2) = �

2
1 + �2: Then, we have:

p
N(b
 � 
0) d! N(0;

@R

@�0
(�0)i(�0)

�1 @R

@�
(�0))

where @R
@�0 (�0) = (0; 2�10; 1):
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Therefore, asymptotic variance of
p
N(b
 � 
0) is

�2
�
0 2�10 1

�
Q�1

0@ 0
2�10
1

1A
(c) Test the hypothesis that 
 = 0

Use LR = 2(l(b�)�l(�0)); LM(Score) = 1
N s(�0)

0i(�0)s(�0) orWald =
N(b���0)0i(b�)�1(b���0) with approximating distribution �2(1): Now,b� is unrestriced ML estimator and �0 is restricted ML estimator.

(d) Compare Wald test and Score(LM) test
First, consider the Wald statistics. It can be derived from the limiting
distribution of

p
N(b
 � 
0) in b) by replacing �0 by b�:

p
N(b
�
0) d! N(0;

@R

@�0
(�0)i(�0)

�1 @R

@�
(�0)) � N(0;

@R

@�0
(b�)i(b�)�1 @R

@�
(b�))

where @R
@�0 (

b�) = (0; 2b�1; 1) and i(b�)�1 = c�2(X0X
N )�1:

Therefore, the Wald statistics is:

W = Nb
2[@R
@�0
(b�)i(b�)�1 @R

@�
(b�)]�1 � �2(1)

Next, consider the Score statistics. For this test, we have to estimate
the model under the restricstion. It will be that y = �0 + �1x1 �
�21x2+ " since �2 = ��21 under the null hypothesis. Note that this is
a nonlinear regression model. So, it is more di¢ cult to estimate this
kind of models than ordinary linear models. For the score statistics,
plug the restricted estimators(call them �) into score function and
construct the score statistics. The resulting statistics is as follows.

Score = N(
1

N
X 0e)0

1

�2
[(
1

N
X 0X)�1](

1

N
X 0e) � �2(1)

where e is a residual vector from restricted model and �2 is a corre-
sponding variance estimator.(Note that 1

�2
X 0e is a score function)

Therefore, in our case, Wald test is more convenient to implement
than the score test.

(e) Compare the tests when �1 = �2 = 0:
In this case, Score test is easy to implement. From the Score statis-
tics from d), e now becomes a vector of demeaned y under the null
hypothesis.

Score = N [
1

N
X 0(y� y � 1)]0 1

�2
[(
1

N
X 0X)�1][

1

N
X 0(y� y � 1)] � �2(2)
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However, for the Wald test, we have to consider two restrictions.

Suppose that R(b�) =  b�1b�2
!

@R
@�0 (

b�) = � 0 1 0
0 0 1

�
and i(b�)�1 =

c�2(X0X
N )�1: All the estimators came from the unrestricted model.

The Wald statistics is as follows.

W = N �R(b�)0 �@R
@�0
(b�)i(b�)�1 @R

@�
(b�)��1R(b�) � �2(2)

Hence, in this case, score test is easy to implement.
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