Econ 620 Spring 2006
Professor N. Kiefer
TA H. Choi

Suggested Solutions to the midterm exam

1. (30pts) Let A be a projection operator on to the orthogonal space to the space spanned by a column of ones.
(a) $R^{2}=R_{1}^{2}=R_{2}^{2}=\left(x^{\prime} A y\right)^{2} /\left\{\left(x^{\prime} A x\right)\left(y^{\prime} A y\right)\right\}$
(Geometry: It's from $R^{2}=\cos ^{2} \theta_{0}$, where θ_{0} is the angle between $A y$ and $A x$.)
(b) $\hat{\beta}_{1}=\left(x^{\prime} A y\right) /\left(x^{\prime} A x\right), \hat{\beta}_{2}=\left(x^{\prime} A y\right) /\left(y^{\prime} A y\right)$, and we have $\hat{\beta}_{1} \hat{\beta}_{2}=R^{2}$.
(c) From $\hat{\beta}_{1}=\left(x^{\prime} A y\right) /\left(x^{\prime} A x\right)$ and $R^{2}=1-e^{\prime} e /\left(y^{\prime} A y\right)$, we have

$$
t_{1}=\hat{\beta}_{1} / \sqrt{\left(x^{\prime} A x\right)^{-1}\left(e_{1}^{\prime} e_{1}\right) /(n-2)}=\left(x^{\prime} A y\right) / \sqrt{\left(x^{\prime} A x\right)\left(y^{\prime} A y\right)\left(1-R^{2}\right) /(n-2)}
$$

This proves $t_{1}=t_{2}$. (Geometry: It's from (i) $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ have a same sign as shown in (b), and (ii) $t_{1}^{2}=t_{2}^{2}=(n-2) \cot ^{2} \theta_{1}$, where θ_{1} is the angle between $A y$ and $A x$.)
2. $(50 \mathrm{pts})$ Let $\sum=\sum_{i=1}^{n}$.
(a) $l(\theta)=\sum d_{i} \log \theta+\sum\left(1-d_{i}\right) \log (1-\theta), s(\theta)=\sum d_{i} / \theta-\sum\left(1-d_{i}\right) /(1-\theta), h(\theta)=-\sum d_{i} / \theta^{2}-$ $\sum\left(1-d_{i}\right) /(1-\theta)^{2}, E(h(\theta))=-n\{1 / \theta+1 /(1-\theta)\}=-n\{1 /(\theta(1-\theta))\}, I(\theta)=n\{1 /(\theta(1-\theta))\}$.
(b) $\hat{\theta}_{M L}=\arg \max l(\theta)=\sum d_{i} / n, \sqrt{n}\left(\hat{\theta}_{M L}-\theta\right) \xrightarrow{d} N\left(0, i(\theta)^{-1}\right)$, where the asymptotic variance $i(\theta)=$ $I(\theta) / n=1 /(\theta(1-\theta))$.
(c) Use $L R=2\left(l\left(\hat{\theta}_{M L}\right)-l\left(\theta_{0}\right)\right), L M=s\left(\theta_{0}\right) I\left(\theta_{0}\right)^{-1} s\left(\theta_{0}\right)$, or $W=\left(\hat{\theta}_{M L}-\theta_{0}\right) I\left(\hat{\theta}_{M L}\right)\left(\hat{\theta}_{M L}-\theta_{0}\right)$ with approximating distribution $\chi^{2}(1)$.
(d) Consider the test,
"Choose H_{0} if $\hat{\theta}_{M L}=0$, and H_{A} if $\hat{\theta}_{M L} \neq 0$ " (Possible tests are randomized tests with this test and a trivial test, "Always reject and choose H_{A} ".)
(e) Type I error $P($ Reject $\mid \theta=0)=0$, and type II error $P($ Fail to Reject $\mid \theta=1 / 2)=0.5$. For the randomized test using the test "Choose H_{0} if $\hat{\theta}_{M L}=0$, and H_{A} if $\hat{\theta}_{M L} \neq 0^{\prime \prime}$ with probability α, or "Always reject and choose H_{A} " with probability $(1-\alpha)$, we have $P($ Reject $\mid \theta=0)=\alpha$, and $P($ Fail to Reject $\mid \theta=$ $1 / 2)=0.5(1-\alpha)$.
3. (20pts) Let $\sum=\sum_{i=1}^{n}$.
(a) $X^{2} \sim \chi^{2}(1)$. (b) $X_{n} \xrightarrow{d} N(0,1)$. (c) $Y_{n}=X_{n}^{2} \xrightarrow{d} \chi^{2}(1)$ by the continuous mapping theorem.

