Econ 620 Spring 2005 Professor N. Kiefer TA H. Choi

Suggested Solutions to the midterm exam

1. We have Z = XR, where

$$R = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Therefore we have $R\alpha = \beta$ from $Ey = Z\alpha = XR\alpha = X\beta$. This implies $R\hat{a}_{LS} = \hat{\beta}_{LS}$.

2. We have $\hat{\beta}_2$ for a) $(X'_2M_1X_2)^{-1}X'_2M_1y$, b) $(X'_2X_2)^{-1}X'_2P_1y$, c) $(X'_2P_1X_2)^{-1}X'_2P_1y$, d) $(X'_2X_2)^{-1}X'_2M_1y$, e) $(X'_2M_1X_2)^{-1}X'_2M_1y$, f) $(X'_2M_1X_2)^{-1}X'_2M_1y$, g) $(X'_2M_1X_2)^{-1}X'_2M_1y$, h) $(X'_2M_1X_2)^{-1}X'_2M_1y$. Hence we have 4 different estimators. (a)-(d) are all different and (e)-(h) are the same as (a).

3. The prediction y_p is 10×1 vector and has the form $y_p = Cy$, where $y = (y_1, ..., y_n)'$. Under LS assumption, y_p is given by the relationship $Cy = X_p \hat{\beta}$, where X_p is known and $\hat{\beta}$ is OLS estimator. We have $C = X_p (X'X)^{-1} X'$. The variance of the prediction errors is $\operatorname{Var}(C\varepsilon - \varepsilon_p) = C\operatorname{Var}(\varepsilon) C' + Var(\varepsilon_p) = \sigma^2 (CC' + I) = \sigma^2 \left(X_p (X'X)^{-1} X_p + I\right)$, where I is 10×10 identity matrix. For correlated errors assumption, from the unbiasedness we have $CX = X_p$ and the variance of the prediction error is

$$Var(C\varepsilon - \varepsilon_p) = CVar(\varepsilon)C' + Var(\varepsilon_p) - C Cov(\varepsilon, \varepsilon_p) - Cov(\varepsilon_p, \varepsilon)C'$$
$$= C\Omega C' + V - CW - W'C',$$
(1)

where $\Omega = Var(\varepsilon)$, $V = Var(\varepsilon_p)$, and $W = Cov(\varepsilon, \varepsilon_p)$. We minimize tr $\{Var(C\varepsilon - \varepsilon_p)\}$ with respect to C with the restriction $CX = X_p$. The solution C^* gives us the similar result with a single y_p prediction case. We have

$$y_p = X_p \hat{\beta}_{GLS} + W' \Omega^{-1} \left(y - X \hat{\beta}_{GLS} \right).$$

The last term is the conditional mean of e_p given e. Therefore

$$C = X_p \left(X' \Omega^{-1} X \right)^{-1} X' \Omega^{-1} + W \Omega^{-1} \left(I - X \left(X' \Omega^{-1} X \right)^{-1} X' \Omega^{-1} \right),$$

use this in the equation (1) to get the prediction error.

4.

$$\hat{\beta}_2 = \left(\sum (1/t - \bar{t})^2\right)^{-1} \sum (1/t - \bar{t}) (y_t - \bar{y}) = \left(\sum (1/t - \bar{t})^2\right)^{-1} \sum (1/t - \bar{t}) (\beta_2 (1/t - \bar{t}) + \varepsilon_t - \bar{\varepsilon})$$

$$= \beta_2 + \left(\sum (1/t - \bar{t})^2\right)^{-1} \sum (1/t - \bar{t}) (\varepsilon_t - \bar{\varepsilon}),$$

where $\sum = \sum_{t=1}^{T}$, $\bar{t} = T^{-1} \sum (1/t)$, $\bar{\varepsilon} = T^{-1} \sum \varepsilon_i$ and $\bar{y} = T^{-1} \sum y_i$. Noting that plim $\bar{t} = 0$, plim $\bar{\varepsilon} = 0$ and $\sum (1/t^2) = \pi^2/6 < \infty$, we have plim $\hat{\beta}_2 = \beta_2 + (\pi^2/6)^{-1} \text{plim} \sum (1/t) \varepsilon_t$. Since $\lim_{T \to \infty} \text{Var}(\sum (1/t) \varepsilon_t) = \lim_{T \to \infty} \sum (1/t^2) = \pi^2/6 \neq 0$, $\hat{\beta}_2$ is not consistent and plim $\sum (1/t) \varepsilon_t$ does not exist. The LS estimator $\hat{\beta}_2$ is unbiased. So $E(\hat{\beta}_2) = \beta$ and $\text{Var}(\hat{\beta}_2) = \sigma^2 (X'_2 M_1 X_2)^{-1} = (\sum (1/t - \bar{t})^2)^{-1}$, which implies $\hat{\beta}_2 \sim N(\beta, (\sum (1/t - \bar{t})^2)^{-1})$. The asymptotic distribution of $\hat{\beta}_2$ is not given by the usual \sqrt{T} -asymptotics, but we have $(\hat{\beta}_2 - \beta) \xrightarrow{d} N(0, (6/\pi^2))$.