Econ 620 Spring 2005
Professor N. Kiefer
TA H. Choi

Suggested Solutions to the midterm exam

1. We have $Z=X R$, where

$$
R=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Therefore we have $R \alpha=\beta$ from $E y=Z \alpha=X R \alpha=X \beta$. This implies $R \hat{a}_{L S}=\hat{\beta}_{L S}$.
2. We have $\hat{\beta}_{2}$ for a) $\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} y$, b) $\left(X_{2}^{\prime} X_{2}\right)^{-1} X_{2}^{\prime} P_{1} y$, c) $\left(X_{2}^{\prime} P_{1} X_{2}\right)^{-1} X_{2}^{\prime} P_{1} y$, d) $\left(X_{2}^{\prime} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} y$, e) $\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} y$, f) $\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} y$, g) $\left.\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} y, \mathrm{~h}\right)\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} y$. Hence we have 4 different estimators. (a)-(d) are all different and (e)-(h) are the same as (a).
3. The prediction y_{p} is 10×1 vector and has the form $y_{p}=C y$, where $y=\left(y_{1}, \ldots, y_{n}\right)^{\prime}$. Under LS assumption, y_{p} is given by the relationship $C y=X_{p} \hat{\beta}$, where X_{p} is known and $\hat{\beta}$ is OLS estimator. We have $C=X_{p}\left(X^{\prime} X\right)^{-1} X^{\prime}$. The variance of the prediction errors is $\operatorname{Var}\left(C \varepsilon-\varepsilon_{p}\right)=C \operatorname{Var}(\varepsilon) C^{\prime}+\operatorname{Var}\left(\varepsilon_{p}\right)=\sigma^{2}\left(C C^{\prime}+I\right)=\sigma^{2}\left(X_{p}\left(X^{\prime} X\right)^{-1} X_{p}+I\right)$, where I is 10×10 identity matrix. For correlated errors assumption, from the unbiasedness we have $C X=X_{p}$ and the variance of the prediction error is

$$
\begin{align*}
\operatorname{Var}\left(C \varepsilon-\varepsilon_{p}\right) & =C \operatorname{Var}(\varepsilon) C^{\prime}+\operatorname{Var}\left(\varepsilon_{p}\right)-C \operatorname{Cov}\left(\varepsilon, \varepsilon_{p}\right)-\operatorname{Cov}\left(\varepsilon_{p}, \varepsilon\right) C^{\prime} \\
& =C \Omega C^{\prime}+V-C W-W^{\prime} C^{\prime} \tag{1}
\end{align*}
$$

where $\Omega=\operatorname{Var}(\varepsilon), V=\operatorname{Var}\left(\varepsilon_{p}\right)$, and $W=\operatorname{Cov}\left(\varepsilon, \varepsilon_{p}\right)$. We minimize $\operatorname{tr}\left\{\operatorname{Var}\left(C \varepsilon-\varepsilon_{p}\right)\right\}$ with respect to C with the restriction $C X=X_{p}$. The solution C^{*} gives us the similar result with a single y_{p} prediction case. We have

$$
y_{p}=X_{p} \hat{\beta}_{G L S}+W^{\prime} \Omega^{-1}\left(y-X \hat{\beta}_{G L S}\right)
$$

The last term is the conditional mean of e_{p} given e. Therefore

$$
C=X_{p}\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}+W \Omega^{-1}\left(I-X\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right)
$$

use this in the equation (1) to get the prediction error.
4.

$$
\begin{aligned}
\hat{\beta}_{2} & =\left(\sum(1 / t-\bar{t})^{2}\right)^{-1} \sum(1 / t-\bar{t})\left(y_{t}-\bar{y}\right)=\left(\sum(1 / t-\bar{t})^{2}\right)^{-1} \sum(1 / t-\bar{t})\left(\beta_{2}(1 / t-\bar{t})+\varepsilon_{t}-\bar{\varepsilon}\right) \\
& =\beta_{2}+\left(\sum(1 / t-\bar{t})^{2}\right)^{-1} \sum(1 / t-\bar{t})\left(\varepsilon_{t}-\bar{\varepsilon}\right)
\end{aligned}
$$

where $\sum=\sum_{t=1}^{T}, \bar{t}=T^{-1} \sum(1 / t), \bar{\varepsilon}=T^{-1} \sum \varepsilon_{i}$ and $\bar{y}=T^{-1} \sum y_{i}$. Noting that plim $\bar{t}=0$, plim $\bar{\varepsilon}=0$ and $\sum\left(1 / t^{2}\right)=\pi^{2} / 6<\infty$, we have plim $\hat{\beta}_{2}=\beta_{2}+\left(\pi^{2} / 6\right)^{-1} \operatorname{plim} \sum(1 / t) \varepsilon_{t}$. Since $\lim _{T \rightarrow \infty} \operatorname{Var}\left(\sum(1 / t) \varepsilon_{t}\right)=$ $\lim _{T \rightarrow \infty} \sum\left(1 / t^{2}\right)=\pi^{2} / 6 \neq 0, \hat{\beta}_{2}$ is not consistent and $\operatorname{plim} \sum(1 / t) \varepsilon_{t}$ does not exist. The LS estimator $\hat{\beta}_{2}$ is unbiased. So $E\left(\hat{\beta}_{2}\right)=\beta$ and $\operatorname{Var}\left(\hat{\beta}_{2}\right)=\sigma^{2}\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1}=\left(\sum(1 / t-\bar{t})^{2}\right)^{-1}$, which implies $\hat{\beta}_{2} \sim N\left(\beta,\left(\sum(1 / t-\bar{t})^{2}\right)^{-1}\right)$. The asymptotic distribution of $\hat{\beta}_{2}$ is not given by the usual \sqrt{T}-asymptotics, but we have $\left(\hat{\beta}_{2}-\beta\right) \xrightarrow{d} N\left(0,\left(6 / \pi^{2}\right)\right)$.

