Cornell University

Department of Economics

Econ 620

Instructor: Prof. Kiefer

Solution to Problem set \# 8

1) We write the model as:

$$
\begin{aligned}
& y_{1}=\gamma_{1} y_{2}+\beta_{11} x_{1}+\epsilon_{1}=Z_{1} \delta_{1}+\epsilon_{1} \\
& y_{2}=\gamma_{2} y_{1}+\beta_{22} x_{2}+\beta_{32} x_{3}+\epsilon_{2}=Z_{2} \delta_{2}+\epsilon_{2}
\end{aligned}
$$

The relevant submatrices are:

$$
\begin{aligned}
& X^{\prime} X=\left(\begin{array}{ccc}
5 & 2 & 3 \\
2 & 10 & 8 \\
3 & 8 & 15
\end{array}\right) \quad X^{\prime} y_{1}=\left(\begin{array}{l}
4 \\
3 \\
5
\end{array}\right) \quad X^{\prime} y_{2}=\left(\begin{array}{l}
3 \\
6 \\
7
\end{array}\right) \\
& X^{\prime} Z_{1}=\left(\begin{array}{ll}
3 & 5 \\
6 & 2 \\
7 & 3
\end{array}\right) \\
& Z_{1}^{\prime} Z_{1}=\left(\begin{array}{cc}
10 & 3 \\
3 & 5
\end{array}\right) \quad X^{\prime} Z_{2}=\left(\begin{array}{ccc}
4 & 2 & 3 \\
3 & 10 & 8 \\
5 & 8 & 15
\end{array}\right) \\
& Z_{2}^{\prime} Z_{2}=\left(\begin{array}{ccc}
20 & 3 & 5 \\
3 & 10 & 8 \\
5 & 8 & 15
\end{array}\right) \quad Z_{1}^{\prime} Z_{2}=\left(\begin{array}{lll}
6 & 6 & 7 \\
4 & 2 & 3
\end{array}\right) \\
& Z_{1}^{\prime} y_{1}=\binom{6}{4} \quad Z_{1}^{\prime} y_{2}=\binom{10}{3} \quad Z_{2}^{\prime} y_{1}=\left(\begin{array}{c}
20 \\
3 \\
5
\end{array}\right) \quad Z_{2}^{\prime} y_{2}=\left(\begin{array}{l}
6 \\
6 \\
7
\end{array}\right) \\
& y_{1}^{\prime} y_{1}=20 y_{2}^{\prime} y_{2}=10
\end{aligned}
$$

a) For equation 1 ,

$$
\begin{aligned}
\widehat{\delta}_{1}^{O L S} & =\binom{\widehat{\gamma}_{1}}{\widehat{\beta}_{11}}=\left(Z_{1}^{\prime} Z_{1}\right)^{-1} Z_{1}^{\prime} y_{1} \\
& =\left(\begin{array}{cc}
10 & 3 \\
3 & 5
\end{array}\right)^{-1}\binom{6}{4} \\
& =\left(\begin{array}{cc}
0.122 & -0.0732 \\
-0.0732 & 0.2439
\end{array}\right)\binom{6}{4} \\
& =\binom{0.439}{0.5366}
\end{aligned}
$$

For equation 2,

$$
\begin{aligned}
\widehat{\delta}_{2}^{O L S} & =\left(\begin{array}{l}
\widehat{\gamma}_{2} \\
\widehat{\beta}_{22} \\
\widehat{\beta}_{32}
\end{array}\right)=\left(Z_{2}^{\prime} Z_{2}\right)^{-1} Z_{2}^{\prime} y_{2} \\
& =\left(\begin{array}{ccc}
20 & 3 & 5 \\
3 & 10 & 8 \\
5 & 8 & 15
\end{array}\right)^{-1}\left(\begin{array}{l}
6 \\
6 \\
7
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0.0546 & -0.0032 & -0.0165 \\
-0.0032 & 0.1746 & -0.0921 \\
-0.0165 & -0.0921 & 0.1213
\end{array}\right)\left(\begin{array}{l}
6 \\
6 \\
7
\end{array}\right) \\
& =\left(\begin{array}{c}
0.1930 \\
0.3841 \\
0.1975
\end{array}\right)
\end{aligned}
$$

The inverses of these matrices were calculated using Matlab.
b)

For equation 1,

$$
\begin{aligned}
\widehat{\delta}_{1}^{2 S L S} & =\binom{\widehat{\gamma}_{1}}{\widehat{\beta}_{11}}=\left(Z_{1}^{\prime} P_{x} Z_{1}\right)^{-1} Z_{1}^{\prime} P_{x} y_{1} \\
& =\left[\left(\begin{array}{ll}
3 & 5 \\
6 & 2 \\
7 & 3
\end{array}\right)^{\prime}\left(\begin{array}{ccc}
5 & 2 & 3 \\
2 & 10 & 8 \\
3 & 8 & 15
\end{array}\right)^{-1}\left(\begin{array}{ll}
3 & 5 \\
6 & 2 \\
7 & 3
\end{array}\right)\right]^{-1}\left(\begin{array}{ll}
3 & 5 \\
6 & 2 \\
7 & 3
\end{array}\right)^{\prime}\left(\begin{array}{ccc}
5 & 2 & 3 \\
2 & 10 & 8 \\
3 & 8 & 15
\end{array}\right)^{-1}\left(\begin{array}{l}
4 \\
3 \\
5
\end{array}\right) \\
& =\binom{0.3688}{0.5787}
\end{aligned}
$$

For equation 2,

$$
\begin{aligned}
\widehat{\delta}_{2}^{2 S L S} & =\left(\begin{array}{l}
\widehat{\gamma}_{2} \\
\widehat{\beta}_{22} \\
\widehat{\beta}_{32}
\end{array}\right)=\left(Z_{2}^{\prime} P_{x} Z_{2}\right)^{-1} Z_{2}^{\prime} P_{x} y_{2} \\
& =\left(\begin{array}{l}
0.484375 \\
0.367188 \\
0.109375
\end{array}\right)
\end{aligned}
$$

c)

The reduced form coefficient matrix estimated by OLS is

$$
\begin{aligned}
\widehat{\Pi} & =\left(X^{\prime} X\right)^{-1} X^{\prime} Y \\
& =\left(\begin{array}{ccc}
5 & 2 & 3 \\
2 & 10 & 8 \\
3 & 8 & 15
\end{array}\right)^{-1}\left(\begin{array}{ll}
4 & 3 \\
3 & 6 \\
5 & 7
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0.2287 & -0.0160 & -0.0372 \\
-0.0160 & 0.1755 & -0.0904 \\
-0.0372 & -0.0904 & 0.1223
\end{array}\right)\left(\begin{array}{ll}
4 & 3 \\
3 & 6 \\
5 & 7
\end{array}\right) \\
& =\left(\begin{array}{cc}
0.6809 & 0.3298 \\
0.0106 & 0.3724 \\
0.1915 & 0.2021
\end{array}\right) \\
\widehat{\Pi} & =\left(X^{\prime} X\right)^{-1} X^{\prime} Y \\
& =\left(\begin{array}{ccc}
5 & 2 & 3 \\
2 & 10 & 8 \\
3 & 8 & 15
\end{array}\right)^{-1}\left(\begin{array}{ll}
4 & 3 \\
3 & 6 \\
5 & 7
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0.2287 & -0.0160 & -0.0372 \\
-0.0160 & 0.1755 & -0.0904 \\
-0.0372 & -0.0904 & 0.1223
\end{array}\right)\left(\begin{array}{ll}
4 & 3 \\
3 & 6 \\
5 & 7
\end{array}\right) \\
& =\left(\begin{array}{cc}
0.6809 & 0.3298 \\
0.0106 & 0.3724 \\
0.1915 & 0.2021
\end{array}\right)
\end{aligned}
$$

Indirectly,

$$
\begin{aligned}
\widehat{\Pi} & =\left(\begin{array}{cc}
\beta_{11} & 0 \\
0 & \beta_{22} \\
0 & \beta_{32}
\end{array}\right)\left(\begin{array}{cc}
1 & -\gamma_{2} \\
-\gamma_{1} & 1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
0.5787 & 0 \\
0 & 0.3672 \\
0 & 0.1094
\end{array}\right)\left(\begin{array}{cc}
1 & -0.484375 \\
-0.3688 & 1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
0.7046 & 0.3413 \\
0.1049 & 0.4471 \\
0.0491 & 0.1334
\end{array}\right)
\end{aligned}
$$

Note that the first equation is overidentified and the second is exactly identified.
2)
a) Using the false structure approach, we have the following restrictions:

$$
\Gamma F=\left(\begin{array}{ll}
1 & \gamma \\
\gamma & 1
\end{array}\right)\left(\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right)
$$

The restrictions here are:

$$
\begin{aligned}
f_{12}+\gamma f_{22} & =\gamma f_{11}+f_{21} \\
f_{11}+\gamma f_{21} & =1 \\
\gamma f_{12}+f_{22} & =1 \\
B F & =\left(\begin{array}{cc}
\beta_{11} & \beta_{21} \\
\beta_{12} & \beta_{22} \\
0 & \beta_{23}
\end{array}\right)\left(\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right)
\end{aligned}
$$

The only restriction here is $\beta_{23} f_{21}=0$
Hence, $f_{21}=0, \quad f_{11}=1, \quad f_{12}+\gamma f_{22}=\gamma \quad$ and $\gamma f_{12}+f_{22}=1 \quad$ which imply $f_{12}=0$ and $f_{22}=1$.

Therefore, the only admissible false structure F is the identity matrix and thus, the model is identified. Indeed, it is exactly identified since $\beta_{13}=0$ identifies the first equation (by order and rank conditions) and the other restriction allows to identifiy the second equation.
b) Using the false structure approach, we have the following restrictions:

$$
\Gamma F=\left(\begin{array}{cc}
1 & 0 \\
\gamma_{1} & 1
\end{array}\right)\left(\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right)
$$

The restrictions here are:

$$
\begin{aligned}
f_{11} & =1 \\
f_{12} & =0 \\
\gamma_{1} f_{12}+f_{22} & =1 \Longrightarrow f_{22}=1 \\
\text { Also, } \quad F^{\prime} \Sigma F & =\left(\begin{array}{cc}
f_{11} & f_{21} \\
f_{12} & f_{22}
\end{array}\right)\left(\begin{array}{cc}
\sigma_{1}^{2} & 0 \\
0 & \sigma_{2}^{2}
\end{array}\right)\left(\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right)
\end{aligned}
$$

The restrictions here are both $f_{11} f_{12} \sigma_{1}^{2}+f_{21} f_{22} \sigma_{2}^{2}=0$

Because $\sigma_{1}^{2}>0$ and $\sigma_{2}^{2}>0$ and $f_{11}=f_{22}=1$ and $f_{12}=0$ and, it must be the case that $f_{21} f_{22}=0$, and hence $f_{21}=0$. Therefore, this model is also identified. Indeed, it is exactly identified. To see this, note that $\gamma_{2}=0$ exactly identifies the second equation and the other restriction allows the first equation to be also identified.

