
Cornell University
Department of Economics

Econ 620 - Spring 2004
Instructor: Prof. Kiefer

Solution to Problem set # 4

1)
For Model I;

X ′X =
[

X ′
1X1 X ′

1X2

X ′
2X1 X ′

2X2

]
and X ′y =

[
X ′

1y
X ′

2y

]
Therefore,

β̂ =

[
β̂1

β̂2

]
= (X ′X)−1

X ′y =
[

X ′
1X1 X ′

1X2

X ′
2X1 X ′

2X2

]−1 [
X ′

1y
X ′

2y

]

We are interested only in β̂1. We have to figure out two upper blocks of the
inverse matrix to calculate β̂1. By the formula of partitioned inverse, the upper-
left corner of the inverse matrix is given by(

X ′
1X1 − X ′

1X2 (X ′
2X2)

−1
X ′

2X1

)−1

=
(
X ′

1

(
I − X2 (X ′

2X2)
−1

X ′
2

)
X1

)−1

= (X ′
1M2X1)

−1

where M2 = I − X2 (X ′
2X2)

−1
X ′

2. And the upper-right corner of the inverse
matrix is

− (X ′
1M2X1)

−1
X ′

1X2 (X ′
2X2)

−1

(To see this, look at Magnus and Neudecker, Matrix differential calculus, page
11 and 12. This book is on reserve in Malott library). Hence, we have

β̂1 = (X ′
1M2X1)

−1
X ′

1y − (X ′
1M2X1)

−1
X ′

1X2 (X ′
2X2)

−1
X ′

2y

= (X ′
1M2X1)

−1
X ′

1

[
I − X2 (X ′

2X2)
−1

X ′
2

]
y = (X ′

1M2X1)
−1 (X ′

1M2y)

On the other hand, the least squares estimator for β1 in the Model II is;

β̃1 = (X ′
1M

′
2M2X1)

−1 (X ′
1M

′
2M2y)

= (X ′
1M2X1)

−1 (X ′
1M2y) = β̂1

Note that M2 is symmetric and idempotent. M2 is a projection matrix onto a
subspace orthogonal to a subspace spanned by columns of X2. Therefore, M2X1
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is an (n × k1) matrix whose jth column consists of residuals from the regression
of the jth column of X1 on X2. In the Model II, we actually regress residual
vector M2y on the matrix of another residuals M2X1. Moreover, you can show
that the residual sums of squares from the two models are identical. It is harder
but doable. Why don’t you try?

e′IeI =
(
y − X1β̂1 − X2β̂2

)′ (
y − X1β̂1 − X2β̂2

)
=
(
M2y − M2X1β̃1

)′ (
M2y − M2X1β̃1

)
= e′IIeII

2)

Rewrite the model as;

Y = β0 + Z1β1 + Z2β2 + ε

where Y = log Q, Z1 = log L, and Z2 = log K. In mean deviation form,

y = X1β1 + X2β2 + ε

where y = Ay, X1 = AZ1, and X2 = AZ2 with A = 1
N 11′. Instead of the true

model, we run the regression;

y = X1β1 + ε

The true estimator would be;

β̂1 = (X ′
1M2X1)

−1
X ′

1M2y

The estimator from the false regression is;

β̃1 = (X ′
1X1)

−1
X ′

1y

Suppose that X1 and X2 are orthogonal - what does it mean? - , X ′
1X2 = 0.

Then,

X ′
1M2X1 = X ′

1

[
I − X2 (X ′

2X2)
−1

X ′
2

]
X1

= X ′
1X1 − X ′

1X2 (X ′
2X2)

−1
X ′

2X1

= X ′
1X1

X ′
1M2y = X ′

1

[
I − X2 (X ′

2X2)
−1

X ′
2

]
y

= X ′
1y − X ′

1X2 (X ′
2X2)

−1
X ′

2y

= X ′
1y
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Hence,
If X1 and X2 are orthogonal, β̃1 = β̂1

i.e. dropping the capital variable does not affect the coefficient on labor. You
can verify that V ar

(
β̃1

)
= V ar

(
β̂1

)
if X1 and X2 are orthogonal.

3)

(a) Easy! -has nothing to do with econometrics. It is directly from the
definition of the constant returns to scale. Use the famous Euler’s theorem.

(b)

∂ log Q

∂ log L
= β2 + β4 log L + β6 log K

∂ log Q

∂ log K
= β3 + β5 log K + β6 log L

Hence, constant returns to scale requires that

β2 + β4 log L + β6 log K + β3 + β5 log K + β6 log L

= (β2 + β3) + (β4 + β6) log L + (β5 + β6) log K = 1

The last equality requires that

(β2 + β3) = 1 ∧ (β4 + β6) = 0 ∧ (β5 + β6) = 0

The above is our null hypothesis. To test the hypothesis, first of all, we run
the unrestricted regression given in the question and keep the residual sum of
squares and then run the restricted regression as shown below; Imposing the
restrictions, we have;

log Q = β1 + β2 log L + β3 log K + β4
(log L)2

2
+ β5

(log K)2

2
+ β6 log L logK + ε

= β1 + β2 log L + (1 − β2) log K

+ (1 − β6)
(log L)2

2
+ (1 − β6)

(log K)2

2
+ β6 log L logK + ε

⇒ log Q − log K − (log L)2

2
− (log K)2

2

= β1 + β2 (log L − log K) + β6

(
log L log K − (log L)2

2
− (log K)2

2

)
+ ε

Define

y = log Q − log K − (log L)2

2
− (log K)2

2
X1 = (log L − log K)

X2 =

(
log L logK − (log L)2

2
− (log K)2

2

)
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Then, we regress y on a constant, X1, and X2 to get the restricted model. The
estimation will results in the restricted residual sum of squares. Then, we form
the F − statistic;

F =
(e′ReR − e′Ue′U ) /3
e′Ue′U/ (N − 6)

∼ F (3, N − 6)

4)

(a) Note that

β̂ = (X ′X)−1
X ′y = β + (X ′X)−1

X ′ε

Hence,
E
(
β̂
)

= β + (X ′X)−1
X ′E (ε) = β unbiased

Moreover,

E
(
β̃
)

= E
[
β̂ + N−11

]
= E

(
β̂
)

+ N−11 = β + N−11 biased

E
(
β
)

= E
[
β̂ + N− 1

2 1
]

= E
(
β̂
)

+ N− 1
2 1 = β + N− 1

2 1 biased

Note that biases of both β̃ and β vanish as N → ∞.

(b) As shown in (a) of question 4, under some proper conditions - what are
they? -

β̂
p→ β

i.e. β̂ is consistent. On the other hand,

plimβ̃ = plim
[
β̂ + N−11

]
= plimβ̂ + plim

N→∞
N−11 = β

plimβ = plim
[
β̂ + N− 1

2 1
]

= plimβ̂ + plim
N→∞

N− 1
2 1 = β

Hence, both β̃ and β are consistent.

(c) Again, under some proper conditions, we have

√
N
(
β̂ − β

)
d→ N

(
0, Q−1

)
where Q =plimX′X

N . Then,

√
N
(
β̃ − β

)
=

√
N
(
β̂ + N−11− β

)
=

√
N
(
β̂ − β

)
+ N− 1

2 1
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Note that √
N
(
β̂ − β

)
d→ N

(
0, Q−1

)
and N− 1

2 1
p→ 0

Hence, √
N
(
β̃ − β

)
d→ N

(
0, Q−1

)
On the other hand,

√
N
(
β − β

)
=

√
N
(
β̂ + N− 1

2 1− β
)

=
√

N
(
β̂ − β

)
+ 1

Again, √
N
(
β̂ − β

)
d→ N

(
0, Q−1

)
and 1

p→ 1

Therefore, √
N
(
β − β

) d→ N
(
1, Q−1

)

5)
(a) Since x′

is are i.i.d. with the finite first moment, we can resort to the
WLLN to conclude that

plim
1
n

n∑
i=1

xi = E (xi)

i.e.

plim
1
n

n∑
i=1

xi =
1
2

For the second quantity, it is simple again the sample average of i.i.d. random
variables x2

i with the finite first moment. We have

plim
1
n

n∑
i=1

x2
i = E

(
x2

i

)
i.e.

plim
1
n

n∑
i=1

x2
i =

1
3

By the same reason, we infer that

plim
1
n

n∑
i=1

x3
i = E

(
x3

i

)
=

1
4
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(b) Note that

β̂ =
∑n

i=1 (xi − xn) (yi − yn)∑n
i=1 (xi − xn)2

=
∑n

i=1 (xi − xn) yi∑n
i=1 (xi − xn)2

=
∑n

i=1 (xi − xn)
(
x2

i + εi

)∑n
i=1 (xi − xn)2

=
∑n

i=1 x2
i (xi − xn) +

∑n
i=1 εi (xi − xn)∑n

i=1 (xi − xn)2

=
1
n

∑n
i=1 x3

i − 1
n

∑n
i=1 x2

i xn + 1
n

∑n
i=1 εixi − 1

n

∑n
i=1 εixn

1
n

∑n
i=1 (xi − xn)2

We will take care of the denominator first.

plim
1
n

n∑
i=1

(xi − xn)2 = plim
1
n

(
n∑

i=1

x2
i − nx2

n

)
= plim

1
n

n∑
i=1

x2
i − plimx2

n

= plim
1
n

n∑
i=1

x2
i − plim

[
1
n

n∑
i=1

xi

]2

= plim
1
n

n∑
i=1

x2
i −

[
plim

1
n

n∑
i=1

xi

]2

=
1
3
−
(

1
2

)2

=
1
12

For the first two terms in numerator,

plim
1
n

n∑
i=1

x3
i =

1
4

plim
1
n

n∑
i=1

x2
i xn = plimxn

1
n

n∑
i=1

x2
i = plimxnplim

1
n

n∑
i=1

x2
i

= plim
1
n

n∑
i=1

xiplim
1
n

n∑
i=1

x2
i =

1
2
× 1

3
=

1
6

Finally, note that 1
n

∑n
i=1 εixi is the sample average of i.i.d. random variables

εixi with finite expectation. Again by the WLLN,

plim
1
n

n∑
i=1

εixi = E (εixi) = E (εi)E (xi) = 0

On the other hand,

plim
1
n

n∑
i=1

εixn = plimxn
1
n

n∑
i=1

εi = plimxnplim
1
n

n∑
i=1

εi

= plim
1
n

n∑
i=1

xiplim
1
n

n∑
i=1

εi = 0
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In sum, we have

plimβ̂ =

(
1
4 − 1

6

)
1
12

= 1

For the intercept term,

α̂ = yn − β̂xn

=
1
n

n∑
i=1

yi − β̂
1
n

n∑
i=1

xi

Hence,

plimα̂ = plim

(
1
n

n∑
i=1

yi − β̂
1
n

n∑
i=1

xi

)
= plim

1
n

n∑
i=1

yi − plimβ̂
1
n

n∑
i=1

xi

= plim
1
n

n∑
i=1

(
x2

i + εi

)− plimβ̂plim
1
n

n∑
i=1

xi

= plim
1
n

n∑
i=1

x2
i + plim

1
n

n∑
i=1

εi − plimβ̂plim
1
n

n∑
i=1

xi

= E
(
x2

i

)
+ E (εi) − 1 × E (xi) =

1
3

+ 0 − 1
2

= −1
6

(c) Note that

E

(
dy

dx

)
= E

(
d

dx

(
x2

i + εi

))
= E (2xi) = 2 × 1

2
= 1

Then, β̂
p→ E

(
dy
dx

)
(d) By the definition of the least squares estimator,

γ̂ =
∑n

i=1 xiyi∑n
i=1 x2

i

=
∑n

i=1 xi

(
x2

i + εi

)∑n
i=1 x2

i

=
∑n

i=1 x3
i +

∑n
i=1 xiεi∑n

i=1 x2
i

=
1
n

∑n
i=1 x3

i + 1
n

∑n
i=1 xiεi

1
n

∑n
i=1 x2

i

Note that

plim
1
n

n∑
i=1

x3
i = E

(
x3

i

)
=

1
4

plim
1
n

n∑
i=1

xiεi = E (xiεi) = E (xi)E (εi) = 0

plim
1
n

n∑
i=1

x2
i = E

(
x2

i

)
=

1
3
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Then,

plimγ̂ =
1
4
1
3

=
3
4

Since, E
(

dy
dx

)
= 1, γ̂

p
� E

(
dy
dx

)
.

6)
(a) We have N sets of observations on (yi, xi) to estimate the parameters(

β′, σ2
)
. In addition, we know the error distribution. Considering the linear

relationship between y and ε, we can immediately identify the distribution of y
as

y ∼ N
(
Xβ, σ2I

)
Conceptually, we have to start the joint density function of (y1, y2, · · ·, yN ) since
that is the data we have. Let’s denote the joint density as

P
(
y1, y2, · · ·, yN ; β, σ2

)
What do we know about the distribution of y′

is? First of all, they are indepen-
dent so that we can express the joint density function as the product of the
marginal density functions;

P
(
y1, y2, · · ·, yN ; β, σ2

)
=

N∏
i=1

pi

(
yi; β, σ2

)
where pi

(
yi; β, σ2

)
is the marginal distribution of the ith observation of y. Can

we go farther than that? Yes, we know that all y′
is have identical distribution.

Then,

P
(
y1, y2, · · ·, yN ; β, σ2

)
=

N∏
i=1

p
(
yi; β, σ2

)
The density function is a function of random variable y given some parameter
value. Changing the perspective, we can treat the density function as a function
of unknown parameters given data y. It is called the likelihood function;

L
(
β, σ2; y1, y2, · · ·, yN

)
=

N∏
i=1

p
(
yi; β, σ2

)
Taking logs to get the log-likelihood function;

log L
(
β, σ2; y1, y2, · · ·, yN

)
=

N∑
i=1

log p
(
yi; β, σ2

)
In case of i.i.d. sample, the log likelihood function of the whole observation is
simply the sum of individual log likelihood functions. Let’s figure out the form
of log p

(
yi; β, σ2

)
. We know that

yi ∼ N
(
β′xi, σ

2
)

8



hence,

p
(
yi; β, σ2

)
=

1√
2πσ2

exp
[
− 1

2σ2
(yi − β′xi)

2
]

Taking logs,

log p
(
yi; β, σ2

)
= −1

2
log 2π − 1

2
log σ2 − 1

2σ2
(yi − β′xi)

2

Then,

log L
(
β, σ2; y1, y2, · · ·, yN

)
=

N∑
i=1

[
−1

2
log 2π − 1

2
log σ2 − 1

2σ2
(yi − β′xi)

2
]

= −N

2
log 2π − N

2
log σ2 − 1

2σ2

N∑
i=1

(yi − β′xi)
2

Yes, this is the thing we want to have. Sometimes, it is more convenient to have
the log likelihood function in vector notation as;

	 = log L
(
β, σ2; y1, y2, · · ·, yN

)
= −N

2
log 2π−N

2
log σ2− 1

2σ2
(y − Xβ)′ (y − Xβ)

We will play with the vector notation since it is the common practice in econo-
metrics. To get the MLE, we differentiate the log likelihood function with
respect to parameters;

∂	

∂β
= − 1

2σ2
(−2X ′y + 2X ′Xβ)

∂	

∂σ2
= − N

2σ2
+

1
2σ4

(y − Xβ)′ (y − Xβ)

Setting the derivatives equal to zero, we have MLE.

β = (X ′X)−1
X ′y

σ2 =

(
y − Xβ

)′ (
y − Xβ

)
N

=
e′e
N

(b) To get the asymptotic distribution of MLE. Recall that
√

N (γ − γ0)
d→ N

(
0, i (γ0)

−1
)

when γ is the MLE of the true value γ0. i (γ0) is the (expected) information
matrix defined as

i (γ0) = E

(
−∂2 log p

∂γ2

)
remember that the information matrix is defined in terms of the second deriva-
tive of individual density. Going back to our case, we can conclude that[ √

N
(
β − β

)
√

N
(
σ2 − σ2

) ] d→ N
(
0, i
(
β, σ2

)−1
)
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To determine the asymptotic variance matrix, we have to calculate the second
derivative of the log likelihood function. One thing you should pay attention to
is that the log likelihood function itself is something involved in the joint density
but we need to calculate the second derivative of the individual likelihood. The
saver lies in the fact that in case of i.i.d. the log likelihood for the whole
observation is the sum of individual log likelihood;

	 = log L
(
β, σ2; y1, y2, · · ·, yN

)
=

N∑
i=1

log p
(
yi; β, σ2

)
Hence,

∂2	

∂β∂β′ =
N∑

i=1

∂2

∂β∂β′ log p
(
yi; β, σ2

)
Then,

E

(
− ∂2	

∂β∂β′

)
= E

[
N∑

i=1

− ∂2

∂β∂β′ log p
(
yi; β, σ2

)]
= Ni

(
β, σ2

)
Therefore, we can work with the log likelihood function to get the second order
derivatives and divide by the sample size N to get the correct estimator of the
asymptotic variance matrix. Taking the second order derivative to get

∂2	

∂β∂β′ = − 1
σ2

(X ′X)

∂2	

∂β∂σ2
= − 1

2σ4
(X ′y − X ′Xβ)

∂2	

∂ (σ2)2
=

N

2σ4
− 1

σ6
(y − Xβ)′ (y − Xβ)

Assigning minus sign and then taking expectations;

E

(
− ∂2	

∂β∂β′

)
=

1
σ2

E (X ′X) =
1
σ2

(X ′X)

E

(
− ∂2	

∂β∂σ2

)
=

1
2σ4

[X ′E (y) − X ′Xβ] =
1

2σ4
[X ′Xβ − X ′Xβ] = 0

E

(
− ∂2	

∂ (σ2)2

)
= − N

2σ4
+

1
σ6

E
[
(y − Xβ)′ (y − Xβ)

]
= − N

2σ4
+

1
σ6

E (ε′ε) = − N

2σ4
+

Nσ2

σ6
=

N

2σ4

Then, the information matrix is given by

i
(
β, σ2

)
=

1
N

[
1

σ2 (X ′X) 0
0 N

2σ4

]
=

[
1

σ2

(
X′X

N

)
0

0 1
2σ4

]
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Taking the inverse of the information matrix to get the asymptotic variance
matrix

i
(
β, σ2

)−1
=

[
σ2
(

X′X
N

)−1

0
0 2σ4

]
Therefore,

√
N

[ (
β − β

)(
σ2 − σ2

) ] d→ N

(
0,

[
σ2
(

X′X
N

)−1

0
0 2σ4

])

In other notation, we may write as;

β
d→ N

(
β, σ2 (X ′X)−1

)
σ2 d→ N

(
σ2,

2σ4

N

)
What do we know about the exact distribution of β? β is equivalent to the

least squares estimator β̂. Under the normality, we know that

β̂ ∼ N
(
β, σ2 (X ′X)−1

)
The asymptotics work!

(c) From (b);

E

(
− ∂2	

∂β∂β′

)
=

1
σ2

E (X ′X) =
1
σ2

(X ′X)

On the other hand,

E

([
∂	

∂β

] [
∂	

∂β

]′)
= E

([
− 1

2σ2
(−2X ′y + 2X ′Xβ)

] [
− 1

2σ2
(−2X ′y + 2X ′Xβ)

]′)

=
1
σ4

E
(
[X ′y − X ′Xβ] [X ′y − X ′Xβ]′

)
=

1
σ4

E [X ′εε′X ] =
1
σ2

(X ′X)
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