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1)
Recall that

e = y − Xβ̂ = y − X (X ′X)−1
X ′y =

[
I − X (X ′X)−1

X ′
]
y = My

= M (Xβ + ε) = MXβ + Mε = Mε

Then,
E (e) = E (Mε) = ME (ε) = 0

since M =
[
I − X (X ′X)−1

X ′
]

is non-stochastic. Hence,

V ar (e) = E
[
(e − E (e)) (e − E (e))′

]
= E [ee′]

= E [Mεε′M ′] = ME [εε′] M = σ2MIM

= σ2M

note that M is symmetric and idempotent. The variance matrix of e is an
(N × N) matrix. The variance of ej is the (j, j) element of the variance matrix,
which can be picked up by

V ar (ej) = σ2M jj = σ2
[
I − X (X ′X)−1

X ′
]jj

= σ2
[
1 − Xj (X ′X)−1

X ′j
]

where Xj is the jth row of X and X ′j is the jth column of X ′. Then,

V ar (ej) − σ2 = σ2
[
1 − Xj (X ′X)−1

X ′j
]
− σ2

= −σ2Xj (X ′X)−1
X ′j

= −σ2Xj (X ′X)−1
X ′

j ≤ 0

since Xj (X ′X)−1 X ′
j is a quadratic form in (X ′X)−1 and we know that (X ′X)

is positive semidefinite and hence so is (X ′X)−1
.

2)
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What is the operator we use to get mean deviation form? Yes, it is A =
I − 1 (1′1)−1 1′. Then, the X matrix is now;

X =
[

1 AX2

]
where 1 is an (N × 1) vector of ones and X2 is an (N × (k − 1)) matrix of
independent variables except for the constant term. Therefore,

X ′X =
[

1′1 1′AX2

X ′
2A1 X ′

2AA′X2

]
=
[

N 0
0 X ′

2AX2

]
X ′y =

[
1′y

X ′
2Ay

]
note that 1′A = A1 = 0 and again A is symmetric idempotent. Hence,

V ar
(
β̂
)

= σ2 (X ′X)−1 = σ2

[
N 0
0 X ′

2AX2

]−1

= σ2

[ 1
N 0
0 (X ′

2AX2)
−1

]
We use the fact that (X ′X) is block diagonal. The covariance between the
intercept and the slope estimator is the off-diagonal term, which is 0.

3)

1. (a) Easy!

(b) First of all, note that

β̂2 = (X ′
2M1X2)

−1 (X ′
2M1y)

= (X ′
2M1X2)

−1
X ′

2M1 (X1β1 + X2β2 + ε)

= (X ′
2M1X2)

−1
X ′

2M1X2β2 + (X ′
2M1X2)

−1
X ′

2M1ε

= β2 + (X ′
2M1X2)

−1
X ′

2M1ε

where M1 = I − X1 (X ′
1X1)

−1
X ′

1. The third equality come from the fact
that M1X1 = 0. Then,

E
(
β̂2

)
= β2 + (X ′

2M1X2)
−1

X ′
2M1E (ε)

= β2 + (X ′
2M1X2)

−1
X ′

2M1X1γ

= β2

again since M1X1 = 0.
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For Xn, it is obvious that

plimXn = plim
(

3 − 1
n2

)
= 3 (1)

On the other hand, by the central limit theorem,
√

n
(
Zn − µ

) d→ N
(
0, σ2

)
when Zn = 1

N

∑n
i=1 Zi with E (Zi) = µ and V ar (Zi) = σ2. The CLT can also

be expressed as √
n
(
Zn − µ

)
σ

d→ N (0, 1)

In our case, E (Zi) = 0. Therefore,

Yn =
√

nZn

σ

d→ N (0, 1) (2)

Moreover, recall the following theorems; If Xn
p→ c and Yn

d→ Y

(i) Xn + Yn
d→ c + Y

(ii) XnYn
d→ cY

(iii) If Yn
d→ Y and g is continuous, g (Yn) d→ g (Y )

(a) From (1) and (2) with (i) , we have

Xn + Yn
d→ 3 + Y

where Y ∼ N (0, 1) . Then,

Xn + Yn
d→ N (3, 1)

(b) From (1) and (2) with (ii) , we have

XnYn
d→ 3Y

where Y ∼ N (0, 1) . Then,

XnYn
d→ N (0, 9)

(c) From (2) and (iii) ,

Y 2
n

d→ Y 2

where Y ∼ N (0, 1) . Then,
Y 2

n
d→ χ2 (1)

5)
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1. Model I;
y = α1D1 + α2D2 + α3D3 + α4D4 + ε

Data matrices are given by

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
1

· · ·
y1

n

y2
1

· · ·
y2

n

y3
1

· · ·
y3

n

y4
1

· · ·
y4

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
· · · · · · · · · · · ·
1 0 0 0
0 1 0 0
· · · · · · · · · · · ·
0 1 0 0
0 0 1 0
· · · · · · · · · · · ·
0 0 1 0
0 0 0 1
· · · · · · · · · · · ·
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where yj

i is the observation on the dependent variable in year i, quarter j.
Then,

α̂ = (X ′X)−1
X ′y =

⎡⎢⎢⎣
n 0 0 0
0 n 0 0
0 0 n 0
0 0 0 n

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

ny1

ny2

ny3

ny4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
y1

y2

y3

y4

⎤⎥⎥⎦
where yj is average value of the dependent variable in the jth quarter.
Model II;

y = α + α2D2 + α3D3 + α4D4 + ε

Data matrices are given by

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
1

· · ·
y1

n

y2
1

· · ·
y2

n

y3
1

· · ·
y3

n

y4
1

· · ·
y4

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
· · · · · · · · · · · ·
1 0 0 0
1 1 0 0
· · · · · · · · · · · ·
1 1 0 0
1 0 1 0
· · · · · · · · · · · ·
1 0 1 0
1 0 0 1
· · · · · · · · · · · ·
1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Then,

α̂ =

⎡⎢⎢⎣
4n n n n
n n 0 0
n 0 n 0
n 0 0 n

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

n
(
y1 + y2 + y3 + y4

)
ny2

ny3

ny4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
y2

y2 − y1

y3 − y1

y4 − y1

⎤⎥⎥⎦
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Suppose the model with other explanatory variable;

y = α1D1 + α2D2 + α3D3 + α4D4 + βx + ε = Dα + βx + ε

y = α + α2D2 + α3D3 + α4D4 + βx + ε = D∗α∗ + β∗x + ε

Then,

β̂ = (x′MDx)−1 (x′MDy) and β̂∗ = (x′MD∗x)−1 (x′MD∗y)

where MD = I −D (D′D)−1
D′ and MD∗ = I −D∗ (D∗′D∗)−1

D∗′. Then,

D (D′D)−1
D′ =

⎡⎢⎢⎣
1
n1n1′

n 0n×n 0n×n 0n×n

0n×n
1
n1n1′

n 0n×n 0n×n

0n×n 0n×n
1
n1n1′

n 0n×n

0n×n 0n×n 0n×n
1
n1n1′

n

⎤⎥⎥⎦
where 1n is an (n × 1) vector of ones and 0n×n is an (n × n) matrix of
zeros. On the other hand

D∗ (D∗′D∗)−1
D∗′ =

⎡⎢⎢⎣
1
n1n1′

n 0n×n 0n×n 0n×n

0n×n
1
n1n1′

n 0n×n 0n×n

0n×n 0n×n
1
n1n1′

n 0n×n

0n×n 0n×n 0n×n
1
n1n1′

n

⎤⎥⎥⎦
Therefore, β̂ = β̂∗.

What if we run the model;

y = α + α1D1 + α2D2 + α3D3 + α4D4 + ε

The X matrix is given by

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0
· · · · · · · · · · · · · · ·
1 1 0 0 0
1 0 1 0 0
· · · · · · · · · · · · · · ·
1 0 1 0 0
1 0 0 1 0
· · · · · · · · · · · · · · ·
1 0 0 1 0
1 0 0 0 1
· · · · · · · · · · · · · · ·
1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The first column is the sum of the other columns. The X matrix is not
of the full column rank, which results in the singularity of (X ′X) matrix.
-Dummy trap-.
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6)

1. We will be very careful in indicating which theorem we use in each step.
We start from the definition of the least squares estimator;

β̂ = (X ′X)−1
X ′y = β + (X ′X)−1

X ′ε (1)

(a) It is much easier to see what is going on if we express the matrix
expression in terms of summation. After a thoughtful moment, you notice
that it is given by

(X ′X) =
N∑

i=1

xix
′
i

where xi is a (k × 1) vector corresponding to the ith observation. From
the condition given in the question

plim
1
N

X ′X = Q

We can conclude that

plim
1
N

N∑
i=1

xix
′
i = Q

The matrix notation is exactly the condition;

plim
X ′X
N

= Q (2)

What about (X ′ε)? − remember that (X ′ε) is a (k × 1) vector −. Again
it is given by

N∑
i=1

xiεi

Let’s scale the sum by N to get 1
N

∑N
i=1 xiεi. Note that

1
N

N∑
i=1

xiεi =
1
N

(x1ε1 + x2ε2 + · · · + xNεN )

The term is the sample average of xiεi, where xiε
′
is are uncorrelated ran-

dom vectors with mean 0 and variance σ2xix
′
i since

E (xiεi) = xiE (εi) = 0 since xi is non-stochastic.

V ar (xiεi) = E (xiεiεix
′
i) = xix

′
iE
(
ε2

i

)
= σ2xix

′
i

Cov (xiεi, xtεt) = E [xiεiεtx
′
t] = xix

′
tE (εiεt) = 0 since i �= t.

Note also that Var(X′ε
N )=σ2

N

(X′X)
N → 0Q = 0. Then, from the Weak Law

of Large Numbers(WLLN), we have

1
N

N∑
i=1

xiεi
p→ 0

6



Then, in vector notation, we have

1
N

X ′ε
p→ 0 (3)

We will slightly reshape (1) to get;

β̂ = β +
(

X ′X
N

)−1
X ′ε
N

Then,

plimβ̂ = plimβ + plim
(

X ′X
N

)−1
X ′ε
N

by (b) in question2

= β + plim
(

X ′X
N

)−1

plim
X ′ε
N

by (a) in question2

= β +
(

plim
X ′X
N

)−1

plim
X ′ε
N

by Slutsky’s theorem

= β + Q−10 by (2) and (3) and Q is invertible
= β

i.e.
β̂

p→ β

In words, the least squares estimator β̂ is a consistent estimator for β.

(b) From (1), we have

β̂ − β = (X ′X)−1
X ′ε

Now, we want to scale slightly differently to invoke the Central Limit
Theorem(CLT);

√
N
(
β̂ − β

)
=
(

X ′X
N

)−1
X ′ε√

N
(4)

We know that (
X ′X
N

)−1
p→ Q−1 (5)

from (2). Now let’s take care of X′ε√
N

. Again, X′ε√
N

is given by

1√
N

N∑
i=1

xiεi =
1√
N

(x1ε1 + x2ε2 + · · · + xNεN)

As we’ve already seen in (a), xiε
′
is are uncorrelated random vectors with

mean 0 and variance σ2xix
′
i. Then, by CLT - here, we use a version of
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CLT in Page 7 of the lecture note since we have different variances across
observations-, (

N∑
i=1

σ2xix
′
i

) 1
2 N∑

i=1

xiεi
d→ N (0, I) (6)

where
(∑N

i=1 σ2xix
′
i

) 1
2

is a notation for Λ such that Λ2 =
∑N

i=1 σ2xix
′
i.

However, we know that

1
N

N∑
i=1

σ2xix
′
i = σ2 1

N

N∑
i=1

xix
′
i

p→ σ2Q (7)

from part (a). Hence,(
1
N

N∑
i=1

σ2xix
′
i

) 1
2

1√
N

N∑
i=1

xiεi
d→ N (0, I)

becomes
1√
N

N∑
i=1

xiεi
d→ N

(
0, σ2Q

)
(8)

Then, from (5) and (8) with (b) in question (3), we have

√
N
(
β̂ − β

)
=
(

X ′X
N

)−1
X ′ε√

N

d→ N
(
0, Q−1QQ−1

)
= N

(
0, Q−1

)
To appreciate the importance of this result, note that we have obtained
asymptotic normality of β̂OLS WITHOUT the assumption of normality of
the error term!.

(c) Note that

s2 =
e′e

N − k
=

ε′Mε

N − k
since e = Mε

=
ε′
[
I − X (X ′X)−1

X ′
]
ε

N − k
=

N

N − k

[
ε′ε
N

− ε′X (X ′X)−1
X ′ε

N

]

=
N

N − k

[
ε′ε
N

− ε′X
N

(
X ′X
N

)−1
X ′ε
N

]
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Now,

plims2 = plim
N

N − k
plim

[
ε′ε
N

− ε′X
N

(
X ′X
N

)−1
X ′ε
N

]
by (a) in question2

= plim
N

N − k

[
plim

ε′ε
N

− plim
ε′X
N

(
X ′X
N

)−1
X ′ε
N

]
by (b) in question2

= plim
N

N − k

[
plim

ε′ε
N

− plim
ε′X
N

plim
(

X ′X
N

)−1

plim
X ′ε
N

]
by (a) in question2

= plim
N

N − k

[
plim

ε′ε
N

− plim
ε′X
N

(
plim

X ′X
N

)−1

plim
X ′ε
N

]
by Slutsky′s theorem

=
[
σ2 − 0′Q−10

]
= σ2

since

plim
N→∞

N

N − k
= 1, plim

X ′ε
N

= 0 by (3)(
plim

X ′X
N

)−1

= Q−1 by (5)

and
ε′ε
N

=
1
N

N∑
i=1

ε2
i

which is again an average of ε2′
i s whose mean is E

(
ε2

i

)
= σ2 .Here, if

we assume that ε2′
i s are independent, then we don’t need to calculate the

variance since we can use a version of WLLN in Notes 3 on page 4 of the
lecture note # 8, and therefore WLLN applies to this case. But otherwise,
we need extra conditions on the ε2′

i s, such as that they are uncorrelated
and that for all i, E

(
ε4

i

)
= φ < ∞ (i.e., second moment of the ε2′

i s exists)
. Then, by WLLN

1
N

N∑
i=1

ε2
i

p→ σ2

Therefore,

plim
ε′ε
N

= σ2
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