Cornell University

Department of Economics

Econ 620

Instructor: Prof. Kiefer

Solution to Problem set \# 3

1)

Recall that

$$
\begin{aligned}
e & =y-X \widehat{\beta}=y-X\left(X^{\prime} X\right)^{-1} X^{\prime} y=\left[I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right] y=M y \\
& =M(X \beta+\varepsilon)=M X \beta+M \varepsilon=M \varepsilon
\end{aligned}
$$

Then,

$$
E(e)=E(M \varepsilon)=M E(\varepsilon)=0
$$

since $M=\left[I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right]$ is non-stochastic. Hence,

$$
\begin{aligned}
\operatorname{Var}(e) & =E\left[(e-E(e))(e-E(e))^{\prime}\right]=E\left[e e^{\prime}\right] \\
& =E\left[M \varepsilon \varepsilon^{\prime} M^{\prime}\right]=M E\left[\varepsilon \varepsilon^{\prime}\right] M=\sigma^{2} M I M \\
& =\sigma^{2} M
\end{aligned}
$$

note that M is symmetric and idempotent. The variance matrix of e is an $(N \times N)$ matrix. The variance of e_{j} is the (j, j) element of the variance matrix, which can be picked up by

$$
\operatorname{Var}\left(e_{j}\right)=\sigma^{2} M^{j j}=\sigma^{2}\left[I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right]^{j j}=\sigma^{2}\left[1-X_{j}\left(X^{\prime} X\right)^{-1} X^{\prime j}\right]
$$

where X_{j} is the j th row of X and $X^{\prime j}$ is the $j t h$ column of X^{\prime}. Then,

$$
\begin{aligned}
\operatorname{Var}\left(e_{j}\right)-\sigma^{2} & =\sigma^{2}\left[1-X_{j}\left(X^{\prime} X\right)^{-1} X^{\prime j}\right]-\sigma^{2} \\
& =-\sigma^{2} X_{j}\left(X^{\prime} X\right)^{-1} X^{\prime j} \\
& =-\sigma^{2} X_{j}\left(X^{\prime} X\right)^{-1} X_{j}^{\prime} \leq 0
\end{aligned}
$$

since $X_{j}\left(X^{\prime} X\right)^{-1} X_{j}^{\prime}$ is a quadratic form in $\left(X^{\prime} X\right)^{-1}$ and we know that $\left(X^{\prime} X\right)$ is positive semidefinite and hence so is $\left(X^{\prime} X\right)^{-1}$.
2)

What is the operator we use to get mean deviation form? Yes, it is $A=$ $I-\mathbf{1}\left(\mathbf{1}^{\prime} \mathbf{1}\right)^{-1} \mathbf{1}^{\prime}$. Then, the X matrix is now;

$$
X=\left[\begin{array}{ll}
\mathbf{1} & A X_{2}
\end{array}\right]
$$

where 1 is an $(N \times 1)$ vector of ones and X_{2} is an $(N \times(k-1))$ matrix of independent variables except for the constant term. Therefore,

$$
\begin{aligned}
X^{\prime} X & =\left[\begin{array}{cc}
\mathbf{1}^{\prime} \mathbf{1} & \mathbf{1}^{\prime} A X_{2} \\
X_{2}^{\prime} A \mathbf{1} & X_{2}^{\prime} A A^{\prime} X_{2}
\end{array}\right]=\left[\begin{array}{cc}
N & \mathbf{0} \\
\mathbf{0} & X_{2}^{\prime} A X_{2}
\end{array}\right] \\
X^{\prime} y & =\left[\begin{array}{c}
\mathbf{1}^{\prime} y \\
X_{2}^{\prime} A y
\end{array}\right]
\end{aligned}
$$

note that $\mathbf{1}^{\prime} A=A \mathbf{1}=\mathbf{0}$ and again A is symmetric idempotent. Hence,

$$
\begin{aligned}
\operatorname{Var}(\widehat{\beta}) & =\sigma^{2}\left(X^{\prime} X\right)^{-1}=\sigma^{2}\left[\begin{array}{cc}
N & \mathbf{0} \\
\mathbf{0} & X_{2}^{\prime} A X_{2}
\end{array}\right]^{-1} \\
& =\sigma^{2}\left[\begin{array}{cc}
\frac{1}{N} & \mathbf{0} \\
\mathbf{0} & \left(X_{2}^{\prime} A X_{2}\right)^{-1}
\end{array}\right]
\end{aligned}
$$

We use the fact that $\left(X^{\prime} X\right)$ is block diagonal. The covariance between the intercept and the slope estimator is the off-diagonal term, which is $\mathbf{0}$.
3)

1. (a) Easy!
(b) First of all, note that

$$
\begin{aligned}
\widehat{\beta}_{2} & =\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1}\left(X_{2}^{\prime} M_{1} y\right) \\
& =\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1}\left(X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon\right) \\
& =\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} X_{2} \beta_{2}+\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} \varepsilon \\
& =\beta_{2}+\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} \varepsilon
\end{aligned}
$$

where $M_{1}=I-X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime}$. The third equality come from the fact that $M_{1} X_{1}=\mathbf{0}$. Then,

$$
\begin{aligned}
E\left(\widehat{\beta}_{2}\right) & =\beta_{2}+\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} E(\varepsilon) \\
& =\beta_{2}+\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} X_{1} \gamma \\
& =\beta_{2}
\end{aligned}
$$

again since $M_{1} X_{1}=\mathbf{0}$.
4)

For X_{n}, it is obvious that

$$
\begin{equation*}
\operatorname{plim} X_{n}=\operatorname{plim}\left(3-\frac{1}{n^{2}}\right)=3 \tag{1}
\end{equation*}
$$

On the other hand, by the central limit theorem,

$$
\sqrt{n}\left(\bar{Z}_{n}-\mu\right) \xrightarrow{d} N\left(0, \sigma^{2}\right)
$$

when $\bar{Z}_{n}=\frac{1}{N} \sum_{i=1}^{n} Z_{i}$ with $E\left(Z_{i}\right)=\mu$ and $\operatorname{Var}\left(Z_{i}\right)=\sigma^{2}$. The CLT can also be expressed as

$$
\frac{\sqrt{n}\left(\bar{Z}_{n}-\mu\right)}{\sigma} \xrightarrow{d} N(0,1)
$$

In our case, $E\left(Z_{i}\right)=0$. Therefore,

$$
\begin{equation*}
Y_{n}=\frac{\sqrt{n} \bar{Z}_{n}}{\sigma} \xrightarrow{d} N(0,1) \tag{2}
\end{equation*}
$$

Moreover, recall the following theorems; If $X_{n} \xrightarrow{p} c$ and $Y_{n} \xrightarrow{d} Y$
(i) $X_{n}+Y_{n} \xrightarrow{d} c+Y$
(ii) $X_{n} Y_{n} \xrightarrow{d} c Y$
(iii) If $Y_{n} \xrightarrow{d} Y$ and g is continuous, $g\left(Y_{n}\right) \xrightarrow{d} g(Y)$
(a) From (1) and (2) with (i), we have

$$
X_{n}+Y_{n} \xrightarrow{d} 3+Y
$$

where $Y \sim N(0,1)$. Then,

$$
X_{n}+Y_{n} \xrightarrow{d} N(3,1)
$$

(b) From (1) and (2) with (ii), we have

$$
X_{n} Y_{n} \xrightarrow{d} 3 Y
$$

where $Y \sim N(0,1)$. Then,

$$
X_{n} Y_{n} \xrightarrow{d} N(0,9)
$$

(c) From (2) and (iii),

$$
Y_{n}^{2} \xrightarrow{d} Y^{2}
$$

where $Y \sim N(0,1)$. Then,

$$
Y_{n}^{2} \xrightarrow{d} \chi^{2}(1)
$$

5)
1. Model I;

$$
y=\alpha_{1} D_{1}+\alpha_{2} D_{2}+\alpha_{3} D_{3}+\alpha_{4} D_{4}+\varepsilon
$$

Data matrices are given by

$$
y=\left[\begin{array}{c}
y_{1}^{1} \\
\cdots \\
y_{n}^{1} \\
y_{1}^{2} \\
\cdots \\
y_{n}^{2} \\
y_{1}^{3} \\
\cdots \\
y_{n}^{3} \\
y_{1}^{4} \\
\cdots \\
y_{n}^{4}
\end{array}\right] \quad X=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where y_{i}^{j} is the observation on the dependent variable in year i, quarter j. Then,

$$
\widehat{\alpha}=\left(X^{\prime} X\right)^{-1} X^{\prime} y=\left[\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n & 0 \\
0 & 0 & 0 & n
\end{array}\right]^{-1}\left[\begin{array}{c}
n \bar{y}^{1} \\
n \bar{y}^{2} \\
n \bar{y}^{3} \\
n \bar{y}^{4}
\end{array}\right]=\left[\begin{array}{c}
\bar{y}^{1} \\
\bar{y}^{2} \\
\bar{y}^{3} \\
\bar{y}^{4}
\end{array}\right]
$$

where \bar{y}^{j} is average value of the dependent variable in the $j^{t h}$ quarter.
Model II;

$$
y=\alpha+\alpha_{2} D_{2}+\alpha_{3} D_{3}+\alpha_{4} D_{4}+\varepsilon
$$

Data matrices are given by

$$
y=\left[\begin{array}{c}
y_{1}^{1} \\
\cdots \\
y_{n}^{1} \\
y_{1}^{2} \\
\cdots \\
y_{n}^{2} \\
y_{1}^{3} \\
\cdots \\
y_{n}^{3} \\
y_{1}^{4} \\
\cdots \\
y_{n}^{4}
\end{array}\right] \quad X=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
\cdots & \cdots & \cdots & \cdots \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
\cdots & \cdots & \cdots & \cdots \\
1 & 0 & 0 & 1
\end{array}\right]
$$

Then,

$$
\widehat{\alpha}=\left[\begin{array}{llll}
4 n & n & n & n \\
n & n & 0 & 0 \\
n & 0 & n & 0 \\
n & 0 & 0 & n
\end{array}\right]^{-1}\left[\begin{array}{c}
n\left(\bar{y}^{1}+\bar{y}^{2}+\bar{y}^{3}+\bar{y}^{4}\right) \\
n \bar{y}^{2} \\
n \bar{y}^{3} \\
n \bar{y}^{4}
\end{array}\right]=\left[\begin{array}{c}
\bar{y}^{2} \\
\bar{y}^{2}-\bar{y}^{1} \\
\bar{y}^{3}-\bar{y}^{1} \\
\bar{y}^{4}-\bar{y}^{1}
\end{array}\right]
$$

Suppose the model with other explanatory variable;

$$
\begin{aligned}
& y=\alpha_{1} D_{1}+\alpha_{2} D_{2}+\alpha_{3} D_{3}+\alpha_{4} D_{4}+\beta x+\varepsilon=D \alpha+\beta x+\varepsilon \\
& y=\alpha+\alpha_{2} D_{2}+\alpha_{3} D_{3}+\alpha_{4} D_{4}+\beta x+\varepsilon=D^{*} \alpha^{*}+\beta^{*} x+\varepsilon
\end{aligned}
$$

Then,

$$
\widehat{\beta}=\left(x^{\prime} M_{D} x\right)^{-1}\left(x^{\prime} M_{D} y\right) \text { and } \widehat{\beta}^{*}=\left(x^{\prime} M_{D^{*}} x\right)^{-1}\left(x^{\prime} M_{D^{*}} y\right)
$$

where $M_{D}=I-D\left(D^{\prime} D\right)^{-1} D^{\prime}$ and $M_{D^{*}}=I-D^{*}\left(D^{* \prime} D^{*}\right)^{-1} D^{* \prime}$. Then,

$$
D\left(D^{\prime} D\right)^{-1} D^{\prime}=\left[\begin{array}{cccc}
\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime} & 0_{n \times n} & 0_{n \times n} & 0_{n \times n} \\
0_{n \times n} & \frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime} & 0_{n \times n} & 0_{n \times n} \\
0_{n \times n} & 0_{n \times n} & \frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime} & 0_{n \times n} \\
0_{n \times n} & 0_{n \times n} & 0_{n \times n} & \frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime}
\end{array}\right]
$$

where $\mathbf{1}_{n}$ is an $(n \times 1)$ vector of ones and $0_{n \times n}$ is an $(n \times n)$ matrix of zeros. On the other hand

$$
D^{*}\left(D^{* \prime} D^{*}\right)^{-1} D^{* \prime}=\left[\begin{array}{cccc}
\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime} & 0_{n \times n} & 0_{n \times n} & 0_{n \times n} \\
0_{n \times n} & \frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime} & 0_{n \times n} & 0_{n \times n} \\
0_{n \times n} & 0_{n \times n} & \frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime} & 0_{n \times n} \\
0_{n \times n} & 0_{n \times n} & 0_{n \times n} & \frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime}
\end{array}\right]
$$

Therefore, $\widehat{\beta}=\widehat{\beta}^{*}$.
What if we run the model;

$$
y=\alpha+\alpha_{1} D_{1}+\alpha_{2} D_{2}+\alpha_{3} D_{3}+\alpha_{4} D_{4}+\varepsilon
$$

The X matrix is given by

$$
X=\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

The first column is the sum of the other columns. The X matrix is not of the full column rank, which results in the singularity of $\left(X^{\prime} X\right)$ matrix. -Dummy trap-.

1. We will be very careful in indicating which theorem we use in each step. We start from the definition of the least squares estimator;

$$
\begin{equation*}
\widehat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon \tag{1}
\end{equation*}
$$

(a) It is much easier to see what is going on if we express the matrix expression in terms of summation. After a thoughtful moment, you notice that it is given by

$$
\left(X^{\prime} X\right)=\sum_{i=1}^{N} x_{i} x_{i}^{\prime}
$$

where x_{i} is a $(k \times 1)$ vector corresponding to the $i^{\text {th }}$ observation. From the condition given in the question

$$
\operatorname{plim} \frac{1}{N} X^{\prime} X=Q
$$

We can conclude that

$$
\operatorname{plim} \frac{1}{N} \sum_{i=1}^{N} x_{i} x_{i}^{\prime}=Q
$$

The matrix notation is exactly the condition;

$$
\begin{equation*}
\operatorname{plim} \frac{X^{\prime} X}{N}=Q \tag{2}
\end{equation*}
$$

What about $\left(X^{\prime} \varepsilon\right) ?$ - remember that $\left(X^{\prime} \varepsilon\right)$ is a $(k \times 1)$ vector - . Again it is given by

$$
\sum_{i=1}^{N} x_{i} \varepsilon_{i}
$$

Let's scale the sum by N to get $\frac{1}{N} \sum_{i=1}^{N} x_{i} \varepsilon_{i}$. Note that

$$
\frac{1}{N} \sum_{i=1}^{N} x_{i} \varepsilon_{i}=\frac{1}{N}\left(x_{1} \varepsilon_{1}+x_{2} \varepsilon_{2}+\cdots+x_{N} \varepsilon_{N}\right)
$$

The term is the sample average of $x_{i} \varepsilon_{i}$, where $x_{i} \varepsilon_{i}^{\prime} s$ are uncorrelated random vectors with mean 0 and variance $\sigma^{2} x_{i} x_{i}^{\prime}$ since

$$
\begin{aligned}
E\left(x_{i} \varepsilon_{i}\right) & =x_{i} E\left(\varepsilon_{i}\right)=0 \text { since } x_{i} \text { is non-stochastic. } \\
\operatorname{Var}\left(x_{i} \varepsilon_{i}\right) & =E\left(x_{i} \varepsilon_{i} \varepsilon_{i} x_{i}^{\prime}\right)=x_{i} x_{i}^{\prime} E\left(\varepsilon_{i}^{2}\right)=\sigma^{2} x_{i} x_{i}^{\prime} \\
\operatorname{Cov}\left(x_{i} \varepsilon_{i}, x_{t} \varepsilon_{t}\right) & =E\left[x_{i} \varepsilon_{i} \varepsilon_{t} x_{t}^{\prime}\right]=x_{i} x_{t}^{\prime} E\left(\varepsilon_{i} \varepsilon_{t}\right)=0 \text { since } i \neq t
\end{aligned}
$$

Note also that $\operatorname{Var}\left(\frac{X^{\prime} \varepsilon}{N}\right)=\frac{\sigma^{2}}{N} \frac{\left(X^{\prime} X\right)}{N} \rightarrow 0 Q=0$. Then, from the Weak Law of Large Numbers(WLLN), we have

$$
\frac{1}{N} \sum_{i=1}^{N} x_{i} \varepsilon_{i} \xrightarrow{p} \mathbf{0}
$$

Then, in vector notation, we have

$$
\begin{equation*}
\frac{1}{N} X^{\prime} \varepsilon \xrightarrow{p} \mathbf{0} \tag{3}
\end{equation*}
$$

We will slightly reshape (1) to get;

$$
\widehat{\beta}=\beta+\left(\frac{X^{\prime} X}{N}\right)^{-1} \frac{X^{\prime} \varepsilon}{N}
$$

Then,

$$
\begin{aligned}
\operatorname{plim} \widehat{\beta} & =\operatorname{plim} \beta+\operatorname{plim}\left(\frac{X^{\prime} X}{N}\right)^{-1} \frac{X^{\prime} \varepsilon}{N} \text { by (b) in question2 } \\
& =\beta+\operatorname{plim}\left(\frac{X^{\prime} X}{N}\right)^{-1} \operatorname{plim} \frac{X^{\prime} \varepsilon}{N} \text { by (a) in question2 } \\
& =\beta+\left(\operatorname{plim} \frac{X^{\prime} X}{N}\right)^{-1} \operatorname{plim} \frac{X^{\prime} \varepsilon}{N} \text { by Slutsky's theorem } \\
& =\beta+Q^{-1} \mathbf{0} \text { by }(2) \text { and (3) and } Q \text { is invertible } \\
& =\beta
\end{aligned}
$$

i.e.

$$
\widehat{\beta} \xrightarrow{p} \beta
$$

In words, the least squares estimator $\widehat{\beta}$ is a consistent estimator for β.
(b) From (1), we have

$$
\widehat{\beta}-\beta=\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon
$$

Now, we want to scale slightly differently to invoke the Central Limit Theorem(CLT);

$$
\begin{equation*}
\sqrt{N}(\widehat{\beta}-\beta)=\left(\frac{X^{\prime} X}{N}\right)^{-1} \frac{X^{\prime} \varepsilon}{\sqrt{N}} \tag{4}
\end{equation*}
$$

We know that

$$
\begin{equation*}
\left(\frac{X^{\prime} X}{N}\right)^{-1} \xrightarrow{p} Q^{-1} \tag{5}
\end{equation*}
$$

from (2). Now let's take care of $\frac{X^{\prime} \varepsilon}{\sqrt{N}}$. Again, $\frac{X^{\prime} \varepsilon}{\sqrt{N}}$ is given by

$$
\frac{1}{\sqrt{N}} \sum_{i=1}^{N} x_{i} \varepsilon_{i}=\frac{1}{\sqrt{N}}\left(x_{1} \varepsilon_{1}+x_{2} \varepsilon_{2}+\cdots+x_{N} \varepsilon_{N}\right)
$$

As we've already seen in (a), $x_{i} \varepsilon_{i}^{\prime} s$ are uncorrelated random vectors with mean 0 and variance $\sigma^{2} x_{i} x_{i}^{\prime}$. Then, by CLT - here, we use a version of

CLT in Page 7 of the lecture note since we have different variances across observations-,

$$
\begin{equation*}
\left(\sum_{i=1}^{N} \sigma^{2} x_{i} x_{i}^{\prime}\right)^{\frac{1}{2}} \sum_{i=1}^{N} x_{i} \varepsilon_{i} \xrightarrow{d} N(\mathbf{0}, I) \tag{6}
\end{equation*}
$$

where $\left(\sum_{i=1}^{N} \sigma^{2} x_{i} x_{i}^{\prime}\right)^{\frac{1}{2}}$ is a notation for Λ such that $\Lambda^{2}=\sum_{i=1}^{N} \sigma^{2} x_{i} x_{i}^{\prime}$.
However, we know that

$$
\begin{equation*}
\frac{1}{N} \sum_{i=1}^{N} \sigma^{2} x_{i} x_{i}^{\prime}=\sigma^{2} \frac{1}{N} \sum_{i=1}^{N} x_{i} x_{i}^{\prime} \xrightarrow{p} \sigma^{2} Q \tag{7}
\end{equation*}
$$

from part (a). Hence,

$$
\left(\frac{1}{N} \sum_{i=1}^{N} \sigma^{2} x_{i} x_{i}^{\prime}\right)^{\frac{1}{2}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N} x_{i} \varepsilon_{i} \xrightarrow{d} N(\mathbf{0}, I)
$$

becomes

$$
\begin{equation*}
\frac{1}{\sqrt{N}} \sum_{i=1}^{N} x_{i} \varepsilon_{i} \xrightarrow{d} N\left(0, \sigma^{2} Q\right) \tag{8}
\end{equation*}
$$

Then, from (5) and (8) with (b) in question (3), we have

$$
\sqrt{N}(\widehat{\beta}-\beta)=\left(\frac{X^{\prime} X}{N}\right)^{-1} \frac{X^{\prime} \varepsilon}{\sqrt{N}} \xrightarrow{d} N\left(\mathbf{0}, Q^{-1} Q Q^{-1}\right)=N\left(\mathbf{0}, Q^{-1}\right)
$$

To appreciate the importance of this result, note that we have obtained asymptotic normality of $\widehat{\beta}_{O L S}$ WITHOUT the assumption of normality of the error term!.
(c) Note that

$$
\begin{aligned}
s^{2} & =\frac{e^{\prime} e}{N-k}=\frac{\varepsilon^{\prime} M \varepsilon}{N-k} \text { since } e=M \varepsilon \\
& =\frac{\varepsilon^{\prime}\left[I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right] \varepsilon}{N-k}=\frac{N}{N-k}\left[\frac{\varepsilon^{\prime} \varepsilon}{N}-\frac{\varepsilon^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon}{N}\right] \\
& =\frac{N}{N-k}\left[\frac{\varepsilon^{\prime} \varepsilon}{N}-\frac{\varepsilon^{\prime} X}{N}\left(\frac{X^{\prime} X}{N}\right)^{-1} \frac{X^{\prime} \varepsilon}{N}\right]
\end{aligned}
$$

Now,

$$
\begin{aligned}
\operatorname{plim} s^{2} & =\operatorname{plim} \frac{N}{N-k} \operatorname{plim}\left[\frac{\varepsilon^{\prime} \varepsilon}{N}-\frac{\varepsilon^{\prime} X}{N}\left(\frac{X^{\prime} X}{N}\right)^{-1} \frac{X^{\prime} \varepsilon}{N}\right] \text { by (a) in question2 } \\
& =\operatorname{plim} \frac{N}{N-k}\left[\operatorname{plim} \frac{\varepsilon^{\prime} \varepsilon}{N}-\operatorname{plim} \frac{\varepsilon^{\prime} X}{N}\left(\frac{X^{\prime} X}{N}\right)^{-1} \frac{X^{\prime} \varepsilon}{N}\right] \text { by (b) in question2 } \\
& =\operatorname{plim} \frac{N}{N-k}\left[\operatorname{plim} \frac{\varepsilon^{\prime} \varepsilon}{N}-\operatorname{plim} \frac{\varepsilon^{\prime} X}{N} \operatorname{plim}\left(\frac{X^{\prime} X}{N}\right)^{-1} \operatorname{plim} \frac{X^{\prime} \varepsilon}{N}\right] \text { by (a) in question2 } \\
& =\operatorname{plim} \frac{N}{N-k}\left[\operatorname{plim} \frac{\varepsilon^{\prime} \varepsilon}{N}-\operatorname{plim} \frac{\varepsilon^{\prime} X}{N}\left(\operatorname{plim} \frac{X^{\prime} X}{N}\right)^{-1} \operatorname{plim} \frac{X^{\prime} \varepsilon}{N}\right] \text { by Slutsky's theorem } \\
& =\left[\sigma^{2}-\mathbf{0}^{\prime} Q^{-1} \mathbf{0}\right]=\sigma^{2}
\end{aligned}
$$

since

$$
\begin{aligned}
\operatorname{plim}_{N \rightarrow \infty} \frac{N}{N-k} & =1, \operatorname{plim} \frac{X^{\prime} \varepsilon}{N}=\mathbf{0} \text { by }(3) \\
\left(\operatorname{plim} \frac{X^{\prime} X}{N}\right)^{-1} & =Q^{-1} \text { by }(5)
\end{aligned}
$$

and

$$
\frac{\varepsilon^{\prime} \varepsilon}{N}=\frac{1}{N} \sum_{i=1}^{N} \varepsilon_{i}^{2}
$$

which is again an average of $\varepsilon_{i}^{2 \prime} s$ whose mean is $E\left(\varepsilon_{i}^{2}\right)=\sigma^{2}$.Here, if we assume that $\varepsilon_{i}^{2 \prime} s$ are independent, then we don't need to calculate the variance since we can use a version of WLLN in Notes 3 on page 4 of the lecture note \# 8, and therefore WLLN applies to this case. But otherwise, we need extra conditions on the $\varepsilon_{i}^{2 \prime} s$, such as that they are uncorrelated and that for all i, $E\left(\varepsilon_{i}^{4}\right)=\phi<\infty$ (i.e., second moment of the $\varepsilon_{i}^{2 \prime} s$ exists) . Then, by WLLN

$$
\frac{1}{N} \sum_{i=1}^{N} \varepsilon_{i}^{2} \xrightarrow{p} \sigma^{2}
$$

Therefore,

$$
\operatorname{plim} \frac{\varepsilon^{\prime} \varepsilon}{N}=\sigma^{2}
$$

