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1) We will use the following fact: loge w = b ⇔ eb = w. By taking log
to base ”10” to the last expression, we get that b log10 e = log10 w. Denote by
”ln” the log to base ”e”, and by log, the log to base 10.

Therefore, log X = log e ln X, for any variable X. Let log x = 1
n

∑n
i=1 log xi

and log y = 1
n

∑n
i=1 log yi and similarly, ln x = 1

n

∑n
i=1 ln xi and ln y =

1
n

∑n
i=1 ln yi

Hence,
ˆ

β10 =
∑n

i=1(log xi−log x) log yi∑n
i=1(log xi−log x)2

=
∑n

i=1(log e)2(lnxi−ln x) ln yi∑n
i=1(log e)2(ln xi−ln x)2

= (log e)2
∑n

i=1(lnxi−ln x) ln yi

(log e)2
∑n

i=1(ln xi−ln x)2
=∑n

i=1(lnxi−ln x) ln yi∑
n
i=1(lnxi−ln x)2

=
ˆ

βe

However, it is not true that
ˆ
α10 =

ˆ
αe.To see this, note that

ˆ
α10 = log y−

ˆ

β10log x = log y−
ˆ

βelog x = log e ln y−
ˆ

βe log e ln x = log e(ln y−
ˆ

βeln x) = log e
ˆ
αe.

Also, if the model is logYt = α10+β10t+εt, then
ˆ
α and

ˆ

β will be different
if we take log to base 10 or log to base e, simply because logYt = log e lnYt, and
hence

logYt = α10 + β10t + εt is equivalent to ln Yt = α10
log e + β10t

log e + εt

log e . To see
this, let t = 1

n

∑n
t=1 t

ˆ

β10 =
∑n

t=1(t−t) log yi∑
n
t=1(t−t)2

= log e
∑n

t=1(t−t) ln yi∑
n
t=1(t−t)2

= log e
ˆ

βe and

ˆ
α10 = log y−

ˆ

β10t = log e ln y − log e
ˆ

βe t = log e( ln y−
ˆ

βe t) = log e
ˆ
αe.

2)

The statement is false. Here is a counterexample: let the joint density of
(X,Y) be

g(x, y) = 2zf(x)f(y),
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where f is univariate standard normal pdf and z is a function of x and y
taking value 1 if xy > 0 and taking value 0 if xy ≤ 0. Clearly, the support
of (X,Y) are the northeast and southwest quadrants (i.e., both x and y are
positive or both x and y are negative), so (X,Y) is not bivariate normal (since
the support of a bivariate normal is R2).

The marginal density (pdf) of X is
∫ +∞
−∞ g(x, y)dy =

∫ +∞
−∞ 2zf(x)f(y)dy =

2f(x)
∫ +∞
−∞ zf(y)dy.

Now, if x > 0, then
∫ +∞
−∞ zf(y)dy =

∫ +∞
0

f(y)dy = 1
2 .

And if x ≤ 0, then
∫ +∞
−∞ zf(y)dy =

∫ 0

−∞ f(y)dy = 1
2 .

Therefore, the marginal pdf of X if f(x). Similarly for Y.

This exercise shows you that if (X,Y) is a bivariate normal, that is stronger
than just saying that the univariate distribution of X and of Y is normal.

3)
a) Yes. The model is linear, E(εi) = 0 for all i, X is full rank (has rank

one) and Var(εi) = 1 for all i (and the errors are uncorrelated since they are
independent random variables).

b) The OLS estimator for β is
ˆ

β =
∑2

i=1 xiyi∑ 2
i=1

= β +
∑ 2

i=1 xiεi∑2
i=1

= 1 + ε1+2ε2
5 .

This comes from minimizing the sum of squares residuals. Note that we do

not demeaned x and y in the formula for
ˆ

β as in the case where there is an
intercept in the model.

So the exact distribution of
ˆ

β is given by its probability mass function

(pmf), which is: 1
4 if

ˆ

β = 2
5 , 4

5 , 6
5 or 8

5 and 0 otherwise.
c) β∗ =

∑
y∑
x = β + ε1+ε2

3 . It is unbiased, and its pmf is : 1
2 if β∗ = 1, 1

4 if
β∗ = 1

3 or 5
3 and 0 otherwise.

d) Var (
ˆ

β) = 1
5 and Var (β∗) = 2

9 . So Var (β∗) >Var (
ˆ

β).

4)

(a) Recall that

β̂ =
∑

i (yi − y) (xi − x)∑
i (xi − x)2

α̂ = y − β̂x
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The information given in the question is not directly usable. However,∑
i

(yi − y) (xi − x) =
∑

i

(xi − x) yi =
∑

i

xiyi − x
∑

i

yi =
∑

i

xiyi − nxy

= 4430 − 22 × 220
22

× 440
22

= 30∑
i

(xi − x)2 =
∑

i

(xi − x) (xi − x) =
∑

i

(xi − x)xi =
∑

i

x2
i − nx2

= 2260 − 22 ×
(

220
22

)2

= 60

Hence,

β̂ =
30
60

= 0.5

α̂ =
440
22

− 0.5 × 220
22

= 15

(b) R2 is defined as the ratio of the explained sum of squares(ESS) to total sum
of squares(TSS).

R2 =
β̂2
∑

i (xi − x)2∑
i (yi − y)2

= β̂2

∑
i x2

i − nx2∑
i y2

i − ny2 = 0.52 × 60
8900 − 22 × 202

= 0.15

(c) By the normality assumption, we know that

β̂ ∼ N

(
β,

σ2∑
i (xi − x)2

)

Moreover,
(n − 2) s2

σ2
∼ χ2 (n − 2)

where s2 = 1
(n−2)

∑
i e2

i . We can also show that β̂ and s2 are independent each
other. Then,

β̂−β√
σ2∑

i(xi−x)2√
(n−2)s2

σ2

(n−2)

=
β̂ − β

s√∑
i(xi−x)2

=
β̂ − β

σ̂β
∼ t (n − 2)

where σ̂β =
√

s2∑
i(xi−x)2

. We want to reject the null hypothesis if

T =

∣∣∣∣∣ β̂ − β

σ̂β

∣∣∣∣∣ > t0.975 (20)
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under the null hypothesis. On the other hand,

s2 =
1

(n − 2)

∑
i

e2
i =

1
(n − 2)

∑
i

(
yi − α̂ − β̂xi

)2

=
1

(n − 2)

∑
i

(
y2

i + α̂2 + β̂2x2
i − 2α̂yi + 2α̂β̂xi − 2β̂xiyi

)
=

1
20

[
8900 + 22 × 152 + 0.52 × 2260 − 2 × 15 × 440

+2 × 15 × 0.5 × 220 − 2 × 0.5 × 4430

]
= 4. 25

Hence, the test statistic is given by

T =

∣∣∣∣∣∣0.5 − 0√
4.25
60

∣∣∣∣∣∣ = 1. 8787

Since t0.975 (20) = 2.086, we do not reject the null hypothesis.

1. (d) The distribution of α̂ is given by

α̂ ∼ N

(
α, σ2

[
1
n

+
x2∑

i (xi − x)2

])

Therefore, τ̂ ≡ α̂ − β̂ is distributed as

τ̂ ∼ N
(
τ, σ2

τ

)
where τ = α − β. By Gauss-Markov theorem τ̂ is the BLUE of τ. The
variance of τ̂ is given by

σ2
τ = V ar (τ̂) = V ar

(
α̂ − β̂

)
= V ar (α̂) + V ar

(
β̂
)
− 2Cov

(
α̂, β̂

)
= σ2

[
1
n

+
x2∑

i (xi − x)2

]
+ σ2 1∑

i (xi − x)2
+ σ2 2x∑

i (xi − x)2

= σ2

[
1
n

+
x2 + 1 + 2x∑

i (xi − x)2

]
We can estimate the variance of τ̂ as

σ̂2
τ = s2

[
1
n

+
x2 + 1 + 2x∑

i (xi − x)2

]

where s2 = 1
n−2

∑
i e2

i .

What do we know? We know that

τ̂ − τ

στ
∼ N (0, 1)

4



and
(n − 2) s2

σ2
∼ χ2 (n − 2)

and τ̂ and s2 are independent. Then,

τ̂−τ
στ√

(n−2)s2

σ2 / (n − 2)
=

τ̂ − τ

σ̂τ
∼ t (n − 2)

We want to reject the null hypothesis if

T =
∣∣∣∣ τ̂ − τ

σ̂τ

∣∣∣∣ > t0.975 (n − 2)

under the null hypothesis. Note that τ̂ = 15 − 0.5 = 14.5 and τ = 10
under the null. Moreover,

σ̂2
τ = s2

[
1
n

+
x2 + 1 + 2x∑

i (xi − x)2

]
= 4.25

[
1
22

+
102 + 1 + 2 × 10

60

]
= 8. 764

The test statistic is now

T =
∣∣∣∣14.5 − 10√

8. 764

∣∣∣∣ = 1. 5201

Since t0.975 (20) = 1.725, again, we do not reject the null hypothesis.

5)

1. You can write

α̂ = y − β̂x =
1
n

∑
i

yi − x

∑
i (xi − x) (yi − y)∑

i (xi − x)2
=

1
n

∑
i

yi − x

∑
i (xi − x) yi∑
i (xi − x)2

=
∑

i

[
1
n
− x

(xi − x)∑
i (xi − x)2

]
yi =

∑
i

miyi

where mi =
[

1
n − x (xi−x)∑

i(xi−x)2

]
=
[

1
n − xwi

]
with wi = (xi−x)∑

i(xi−x)2
. Then,

V ar (α̂) = σ2
∑

i m2
i . Now, consider an alternative linear estimator such

that

α̃ =
∑

i

hiyi =
∑

i

hi (α + βxi + εi) = α
∑

i

hi + β
∑

i

hixi +
∑

i

hiεi

Then,
E (α̃) = α

∑
i

hi + β
∑

i

hixi
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Therefore, unbiasedness requires that
∑

i hi = 1 and
∑

i hixi = 0. Intro-
duce a new expression for hi;

hi = mi + gi

We can always do this! - gi may be negative-. Now,

V ar (α̃) = E

⎡⎣(∑
i

hiεi

)2
⎤⎦ =

∑
i

h2
i E
(
ε2

i

)
= σ2

∑
i

h2
i

= σ2
∑

i

(mi + gi)
2 = σ2

∑
i

m2
i + σ2

∑
i

g2
i + 2σ2

∑
i

migi

= σ2
∑

i

m2
i + σ2

∑
i

g2
i ≥ σ2

∑
i

m2
i = V ar (α̂)

since∑
i

migi =
∑

i

mi (hi − mi) =
∑

i

mihi −
∑

i

m2
i =

∑
i

[
1
n
− xwi

]
hi −

∑
i

[
1
n
− xwi

]2
=

1
n

∑
i

hi − x
∑

i

wihi −
∑

i

(
1
n

)2

+
2x

n

∑
i

wi − x2
∑

i

w2
i

=
1
n
− x

∑
i

(
(xi − x)∑
i (xi − x)2

)
hi − 1

n
− x2 1∑

i (xi − x)2

=
1
n
− x

∑
i

xihi∑
i (xi − x)2

+ x2
∑

i

hi∑
i (xi − x)2

− 1
n
− x2 1∑

i (xi − x)2

=
1
n

+ x2 1∑
i (xi − x)2

− 1
n
− x2 1∑

i (xi − x)2
= 0

The third row follows from
∑

i hi = 1 and
∑

i w2
i = 1. The last row follows

from
∑

i xihi = 0 and
∑

i hi = 1.
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