Cornell University
 Department of Economics

Econ 620

Instructor: Prof. Kiefer

Solution to Problem set \# 1

1) We will use the following fact: $\log _{e} w=b \Leftrightarrow e^{b}=w$. By taking log to base " 10 " to the last expression, we get that $b \log _{10} e=\log _{10} w$. Denote by "ln" the log to base "e", and by log, the log to base 10.

Therefore, $\log \mathrm{X}=\log \mathrm{e} \ln \mathrm{X}$, for any variable X . Let $\overline{\log x}=\frac{1}{n} \sum_{i=1}^{n} \log x_{i}$ and $\overline{\log y}=\frac{1}{n} \sum_{i=1}^{n} \log y_{i}$ and similarly, $\overline{\ln x}=\frac{1}{n} \sum_{i=1}^{n} \ln x_{i} \quad$ and $\overline{\ln y}=$ $\frac{1}{n} \sum_{i=1}^{n} \ln y_{i}$

Hence,
$\hat{\beta}_{10}=\frac{\sum_{i=1}^{n}\left(\log x_{i}-\overline{\log x}\right) \log y_{i}}{\sum_{i=1}^{n}\left(\log x_{i}-\overline{\log x}\right)^{2}}=\frac{\sum_{i=1}^{n}(\log e)^{2}\left(\ln x_{i}-\overline{\ln x}\right) \ln y_{i}}{\sum_{i=1}^{n}(\log e)^{2}\left(\ln x_{i}-\overline{\ln x}\right)^{2}}=\frac{(\log e)^{2} \sum_{i=1}^{n}\left(\ln x_{i}-\overline{\ln x}\right) \ln y_{i}}{(\log e)^{2} \sum_{i=1}^{n}\left(\ln x_{i}-\overline{\ln x}\right)^{2}}=$ $\frac{\sum_{i=1}^{n}\left(\ln x_{i}-\overline{\ln x}\right) \ln y_{i}}{\sum_{i=1}^{n}\left(\ln x_{i}-\overline{\ln x}\right)^{2}}=\hat{\beta}_{e}$

However, it is not true that $\alpha_{10}=\alpha_{e}$. To see this, note that
$\hat{\alpha}_{10}=\overline{\log y}-\beta_{10} \overline{\log x}=\overline{\log y}-\beta_{e} \overline{\log x}=\log e \overline{\ln y}-\beta_{e} \log e \overline{\ln x}=\log e(\overline{\ln y}-$ $\left.\beta_{e} \overline{\ln x}\right)=\log e \hat{\alpha}_{e}$.

Also, if the model is $\log Y_{t}=\alpha_{10}+\beta_{10} t+\varepsilon_{t}$, then α and β will be different if we take \log to base 10 or \log to base e, simply because $\log Y_{t}=\log e \ln Y_{t}$, and hence
$\log Y_{t}=\alpha_{10}+\beta_{10} t+\varepsilon_{t} \quad$ is equivalent to $\ln Y_{t}=\frac{\alpha_{10}}{\log e}+\frac{\beta_{10} t}{\log e}+\frac{\varepsilon_{t}}{\log e}$. To see this, let $\bar{t}=\frac{1}{n} \sum_{t=1}^{n} t$
$\hat{\beta}_{10}=\frac{\sum_{t=1}^{n}(t-\bar{t}) \log y_{i}}{\sum_{t=1}^{n}(t-\bar{t})^{2}}=\frac{\log e \sum_{t=1}^{n}(t-\bar{t}) \ln y_{i}}{\sum_{t=1}^{n}(t-\bar{t})^{2}}=\log e \hat{\beta}_{e}$ and
$\hat{\alpha}_{10}=\overline{\log y}-\beta_{10} \bar{t}=\log e \overline{\ln y}-\log e \beta_{e} \bar{t}=\log e\left(\overline{\ln y}-\beta_{e} \bar{t}\right)=\log e \hat{\alpha_{e}}$.
2)

The statement is false. Here is a counterexample: let the joint density of (X,Y) be

$$
g(x, y)=2 z f(x) f(y)
$$

where f is univariate standard normal pdf and z is a function of x and y taking value 1 if $x y>0$ and taking value 0 if $x y \leq 0$. Clearly, the support of (X, Y) are the northeast and southwest quadrants (i.e., both x and y are positive or both x and y are negative), so (X, Y) is not bivariate normal (since the support of a bivariate normal is R^{2}).

The marginal density (pdf) of X is $\int_{-\infty}^{+\infty} g(x, y) d y=\int_{-\infty}^{+\infty} 2 z f(x) f(y) d y=$ $2 f(x) \int_{-\infty}^{+\infty} z f(y) d y$.

Now, if $x>0$, then $\int_{-\infty}^{+\infty} z f(y) d y=\int_{0}^{+\infty} f(y) d y=\frac{1}{2}$.
And if $x \leq 0$, then $\int_{-\infty}^{+\infty} z f(y) d y=\int_{-\infty}^{0} f(y) d y=\frac{1}{2}$.
Therefore, the marginal pdf of X if $f(x)$. Similarly for Y.
This exercise shows you that if (X, Y) is a bivariate normal, that is stronger than just saying that the univariate distribution of X and of Y is normal.
3)
a) Yes. The model is linear, $\mathrm{E}\left(\varepsilon_{i}\right)=0$ for all i, X is full rank (has rank one) and $\operatorname{Var}\left(\varepsilon_{i}\right)=1$ for all i (and the errors are uncorrelated since they are independent random variables).
b) The OLS estimator for β is

$$
\hat{\beta}=\frac{\sum_{i=1}^{2} x_{i} y_{i}}{\sum_{i=1}^{2}}=\beta+\frac{\sum_{i=1}^{2} x_{i} \varepsilon_{i}}{\sum_{i=1}^{2}}=1+\frac{\varepsilon_{1}+2 \varepsilon_{2}}{5} .
$$

This comes from minimizing the sum of squares residuals. Note that we do not demeaned x and y in the formula for β as in the case where there is an intercept in the model.

So the exact distribution of β is given by its probability mass function (pmf), which is: $\frac{1}{4}$ if $\beta=\frac{2}{5}, \frac{4}{5}, \frac{6}{5}$ or $\frac{8}{5}$ and 0 otherwise.
c) $\beta^{*}=\frac{\sum y}{\sum x}=\beta+\frac{\varepsilon_{1}+\varepsilon_{2}}{3}$. It is unbiased, and its pmf is : $\frac{1}{2}$ if $\beta^{*}=1, \frac{1}{4}$ if $\beta^{*}=\frac{1}{3}$ or $\frac{5}{3}$ and 0 otherwise.
d) $\operatorname{Var}(\beta)=\frac{1}{5} \quad$ and $\operatorname{Var}\left(\beta^{*}\right)=\frac{2}{9}$. So $\operatorname{Var}\left(\beta^{*}\right)>\operatorname{Var}(\beta)$.
4)
(a) Recall that

$$
\begin{aligned}
& \widehat{\beta}=\frac{\sum_{i}\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \\
& \widehat{\alpha}=\bar{y}-\widehat{\beta} \bar{x}
\end{aligned}
$$

The information given in the question is not directly usable. However,

$$
\begin{aligned}
\sum_{i}\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right) & =\sum_{i}\left(x_{i}-\bar{x}\right) y_{i}=\sum_{i} x_{i} y_{i}-\bar{x} \sum_{i} y_{i}=\sum_{i} x_{i} y_{i}-n \overline{x y} \\
& =4430-22 \times \frac{220}{22} \times \frac{440}{22}=30 \\
\sum_{i}\left(x_{i}-\bar{x}\right)^{2} & =\sum_{i}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)=\sum_{i}\left(x_{i}-\bar{x}\right) x_{i}=\sum_{i} x_{i}^{2}-n \bar{x}^{2} \\
& =2260-22 \times\left(\frac{220}{22}\right)^{2}=60
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \widehat{\beta}=\frac{30}{60}=0.5 \\
& \widehat{\alpha}=\frac{440}{22}-0.5 \times \frac{220}{22}=15
\end{aligned}
$$

(b) R^{2} is defined as the ratio of the explained sum of squares(ESS) to total sum of squares(TSS).

$$
R^{2}=\frac{\widehat{\beta}^{2} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i}\left(y_{i}-\bar{y}\right)^{2}}=\widehat{\beta}^{2} \frac{\sum_{i} x_{i}^{2}-n \bar{x}^{2}}{\sum_{i} y_{i}^{2}-n \bar{y}^{2}}=0.5^{2} \times \frac{60}{8900-22 \times 20^{2}}=0.15
$$

(c) By the normality assumption, we know that

$$
\widehat{\beta} \sim N\left(\beta, \frac{\sigma^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right)
$$

Moreover,

$$
\frac{(n-2) s^{2}}{\sigma^{2}} \sim \chi^{2}(n-2)
$$

where $s^{2}=\frac{1}{(n-2)} \sum_{i} e_{i}^{2}$. We can also show that $\widehat{\beta}$ and s^{2} are independent each other. Then,

$$
\frac{\frac{\widehat{\beta}-\beta}{\sqrt{\frac{\sigma^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}}}}{\sqrt{\frac{(n-2) s^{2}}{(n-2)}}}=\frac{\widehat{\beta}-\beta}{\frac{s}{\sqrt{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}}}=\frac{\widehat{\beta}-\beta}{\widehat{\sigma}_{\beta}} \sim t(n-2)
$$

where $\widehat{\sigma}_{\beta}=\sqrt{\frac{s^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}}$. We want to reject the null hypothesis if

$$
T=\left|\frac{\widehat{\beta}-\beta}{\widehat{\sigma}_{\beta}}\right|>t_{0.975}(20)
$$

under the null hypothesis. On the other hand,

$$
\begin{aligned}
s^{2} & =\frac{1}{(n-2)} \sum_{i} e_{i}^{2}=\frac{1}{(n-2)} \sum_{i}\left(y_{i}-\widehat{\alpha}-\widehat{\beta} x_{i}\right)^{2} \\
& =\frac{1}{(n-2)} \sum_{i}\left(y_{i}^{2}+\widehat{\alpha}^{2}+\widehat{\beta}^{2} x_{i}^{2}-2 \widehat{\alpha} y_{i}+2 \widehat{\alpha} \widehat{\beta} x_{i}-2 \widehat{\beta} x_{i} y_{i}\right) \\
& =\frac{1}{20}\left[\begin{array}{c}
8900+22 \times 15^{2}+0.5^{2} \times 2260-2 \times 15 \times 440 \\
+2 \times 15 \times 0.5 \times 220-2 \times 0.5 \times 4430
\end{array}\right] \\
& =4.25
\end{aligned}
$$

Hence, the test statistic is given by

$$
T=\left|\frac{0.5-0}{\sqrt{\frac{4.25}{60}}}\right|=1.8787
$$

Since $t_{0.975}(20)=2.086$, we do not reject the null hypothesis.

1. (d) The distribution of $\widehat{\alpha}$ is given by

$$
\widehat{\alpha} \sim N\left(\alpha, \sigma^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right]\right)
$$

Therefore, $\widehat{\tau} \equiv \widehat{\alpha}-\widehat{\beta}$ is distributed as

$$
\widehat{\tau} \sim N\left(\tau, \sigma_{\tau}^{2}\right)
$$

where $\tau=\alpha-\beta$. By Gauss-Markov theorem $\widehat{\tau}$ is the BLUE of τ. The variance of $\widehat{\tau}$ is given by

$$
\begin{aligned}
\sigma_{\tau}^{2} & =\operatorname{Var}(\widehat{\tau})=\operatorname{Var}(\widehat{\alpha}-\widehat{\beta})=\operatorname{Var}(\widehat{\alpha})+\operatorname{Var}(\widehat{\beta})-2 \operatorname{Cov}(\widehat{\alpha}, \widehat{\beta}) \\
& =\sigma^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right]+\sigma^{2} \frac{1}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}+\sigma^{2} \frac{2 \bar{x}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \\
& =\sigma^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}+1+2 \bar{x}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right]
\end{aligned}
$$

We can estimate the variance of $\widehat{\tau}$ as

$$
\widehat{\sigma}_{\tau}^{2}=s^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}+1+2 \bar{x}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right]
$$

where $s^{2}=\frac{1}{n-2} \sum_{i} e_{i}^{2}$.
What do we know? We know that

$$
\frac{\widehat{\tau}-\tau}{\sigma_{\tau}} \sim N(0,1)
$$

and

$$
\frac{(n-2) s^{2}}{\sigma^{2}} \sim \chi^{2}(n-2)
$$

and $\widehat{\tau}$ and s^{2} are independent. Then,

$$
\frac{\frac{\hat{\tau}-\tau}{\sigma_{\tau}}}{\sqrt{\frac{(n-2) s^{2}}{\sigma^{2}} /(n-2)}}=\frac{\widehat{\tau}-\tau}{\widehat{\sigma}_{\tau}} \sim t(n-2)
$$

We want to reject the null hypothesis if

$$
T=\left|\frac{\widehat{\tau}-\tau}{\widehat{\sigma}_{\tau}}\right|>t_{0.975}(n-2)
$$

under the null hypothesis. Note that $\widehat{\tau}=15-0.5=14.5$ and $\tau=10$ under the null. Moreover,

$$
\widehat{\sigma}_{\tau}^{2}=s^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}+1+2 \bar{x}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right]=4.25\left[\frac{1}{22}+\frac{10^{2}+1+2 \times 10}{60}\right]=8.764
$$

The test statistic is now

$$
T=\left|\frac{14.5-10}{\sqrt{8.764}}\right|=1.5201
$$

Since $t_{0.975}(20)=1.725$, again, we do not reject the null hypothesis.
5)

1. You can write

$$
\begin{aligned}
\widehat{\alpha} & =\bar{y}-\widehat{\beta} \bar{x}=\frac{1}{n} \sum_{i} y_{i}-\bar{x} \frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}=\frac{1}{n} \sum_{i} y_{i}-\bar{x} \frac{\sum_{i}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \\
& =\sum_{i}\left[\frac{1}{n}-\bar{x} \frac{\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right] y_{i}=\sum_{i} m_{i} y_{i}
\end{aligned}
$$

where $m_{i}=\left[\frac{1}{n}-\bar{x} \frac{\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right]=\left[\frac{1}{n}-\bar{x} w_{i}\right]$ with $w_{i}=\frac{\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}$. Then, $\operatorname{Var}(\widehat{\alpha})=\sigma^{2} \sum_{i} m_{i}^{2}$. Now, consider an alternative linear estimator such that

$$
\widetilde{\alpha}=\sum_{i} h_{i} y_{i}=\sum_{i} h_{i}\left(\alpha+\beta x_{i}+\varepsilon_{i}\right)=\alpha \sum_{i} h_{i}+\beta \sum_{i} h_{i} x_{i}+\sum_{i} h_{i} \varepsilon_{i}
$$

Then,

$$
E(\widetilde{\alpha})=\alpha \sum_{i} h_{i}+\beta \sum_{i} h_{i} x_{i}
$$

Therefore, unbiasedness requires that $\sum_{i} h_{i}=1$ and $\sum_{i} h_{i} x_{i}=0$. Introduce a new expression for h_{i};

$$
h_{i}=m_{i}+g_{i}
$$

We can always do this! - g_{i} may be negative-. Now,

$$
\begin{aligned}
\operatorname{Var}(\widetilde{\alpha}) & =E\left[\left(\sum_{i} h_{i} \varepsilon_{i}\right)^{2}\right]=\sum_{i} h_{i}^{2} E\left(\varepsilon_{i}^{2}\right)=\sigma^{2} \sum_{i} h_{i}^{2} \\
& =\sigma^{2} \sum_{i}\left(m_{i}+g_{i}\right)^{2}=\sigma^{2} \sum_{i} m_{i}^{2}+\sigma^{2} \sum_{i} g_{i}^{2}+2 \sigma^{2} \sum_{i} m_{i} g_{i} \\
& =\sigma^{2} \sum_{i} m_{i}^{2}+\sigma^{2} \sum_{i} g_{i}^{2} \geq \sigma^{2} \sum_{i} m_{i}^{2}=\operatorname{Var}(\widehat{\alpha})
\end{aligned}
$$

since

$$
\begin{aligned}
\sum_{i} m_{i} g_{i} & =\sum_{i} m_{i}\left(h_{i}-m_{i}\right)=\sum_{i} m_{i} h_{i}-\sum_{i} m_{i}^{2}=\sum_{i}\left[\frac{1}{n}-\bar{x} w_{i}\right] h_{i}-\sum_{i}\left[\frac{1}{n}-\bar{x} w_{i}\right]^{2} \\
& =\frac{1}{n} \sum_{i} h_{i}-\bar{x} \sum_{i} w_{i} h_{i}-\sum_{i}\left(\frac{1}{n}\right)^{2}+\frac{2 \bar{x}}{n} \sum_{i} w_{i}-\bar{x}^{2} \sum_{i} w_{i}^{2} \\
& =\frac{1}{n}-\bar{x} \sum_{i}\left(\frac{\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right) h_{i}-\frac{1}{n}-\bar{x}^{2} \frac{1}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \\
& =\frac{1}{n}-\bar{x} \sum_{i} \frac{x_{i} h_{i}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}+\bar{x}^{2} \sum_{i} \frac{h_{i}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}-\frac{1}{n}-\bar{x}^{2} \frac{1}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \\
& =\frac{1}{n}+\bar{x}^{2} \frac{1}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}-\frac{1}{n}-\bar{x}^{2} \frac{1}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}=0
\end{aligned}
$$

The third row follows from $\sum_{i} h_{i}=1$ and $\sum_{i} w_{i}^{2}=1$. The last row follows from $\sum_{i} x_{i} h_{i}=0$ and $\sum_{i} h_{i}=1$.

