Cornell University
 Department of Economics

Econ 620 - Spring 2004
Instructor: Prof. Kiefer

Problem set \# 5

1. Find the autocorrelation function of the following processes.
(a) $X_{t}=\alpha X_{t-1}+\varepsilon_{t}$ where $|\rho|<1$ and $\varepsilon_{t} \sim i . i . d .\left(0, \sigma_{\varepsilon}^{2}\right)$
(b) $Y_{t}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}$ where $\varepsilon_{t} \sim i . i . d .\left(0, \sigma_{\varepsilon}^{2}\right)$
(c) $Z_{t}=\rho Z_{t-1}+\varepsilon_{t}+\theta \varepsilon_{t-1}$ where $|\rho|<1$ and $\varepsilon_{t} \sim i . i . d .\left(0, \sigma_{\varepsilon}^{2}\right)$
2. Suppose that we have the following regression model;

$$
Y_{t}=\beta_{1}+\beta_{2} X_{t}+\beta_{3} Y_{t-1}+u_{t}
$$

where X_{t} is non-stochastic. Further, we have the following error structure;

$$
u_{t}=\rho u_{t-1}+\varepsilon_{t}
$$

where $|\rho|<1$ and $\varepsilon_{t} \sim i . i . d .\left(0, \sigma_{\varepsilon}^{2}\right)$.
(a) Prove that

$$
\operatorname{plim} \widehat{\beta}_{3} \neq \beta_{3}
$$

where $\widehat{\beta}_{3}$ is the OLS estimator of β_{3}.
(b) How can you obtain a consistent estimator for β_{3} ?
3. Consider estimation of σ^{2} in the generalized linear regression model. There is a fundamental ambiguity in regard to this parameter as it is merely a scaling of $E\left(\varepsilon \varepsilon^{\prime}\right)=\sigma^{2} \Omega$. Since both components are unknown, σ^{2} cannot be estimable until some scaling of Ω is assumed to remove the indeterminacy. The most convenient assumption is that

$$
\operatorname{tr}(\Omega)=N
$$

The classical regression model in which $\Omega=I$ is one such case, so this provides a useful benchmark. Now, consider the estimator $s^{2}=e^{\prime} e /(N-k)$, where e is the vector of the OLS residuals.
(a) Prove that

$$
E\left(s^{2}\right)=\frac{N \sigma^{2}}{(N-k)}-\frac{\sigma^{2} \operatorname{tr}\left[\left(\frac{X^{\prime} X}{N-k}\right)^{-1}\left(\frac{X^{\prime} \Omega X}{N-k}\right)\right]}{(N-k)}
$$

(b) Prove that if

$$
\begin{aligned}
\operatorname{plim} \frac{X^{\prime} X}{N} & =Q \text { where } Q \text { is positive definite } \\
\operatorname{plim} \frac{X^{\prime} \varepsilon}{N} & =\mathbf{0} \\
\operatorname{plim} \frac{X^{\prime} \Omega X}{N} & =L \text { where } L \text { is positive definite }
\end{aligned}
$$

then,

$$
\lim _{N \rightarrow \infty} E\left(s^{2}\right)=\sigma^{2}
$$

(c) To consider the issue of consistency, prove that

$$
\operatorname{plim} s^{2}=\operatorname{plim}\left(\frac{1}{N-k}\right) \sum_{i=1}^{N} \varepsilon_{i}^{2}
$$

Under what conditions is plims ${ }^{2}=\sigma^{2}$?
4. What are the cases in which the seemingly unrelated regression estimator(SURE) is equivalent to the OLS estimator? Prove your claim.
5. a) Expand the rational lag model:

$$
y_{t}=\frac{0.6+2 L}{1-0.6 L+0.5 L^{2}} x_{t}+\varepsilon_{t}
$$

What are the coefficients on $x_{t-1}, x_{t-2}, x_{t-3}$ and x_{t-4} ?
b) Suppose that the model in part a) were specified as

$$
y_{t}=\alpha+\frac{\beta+\gamma L}{1-\delta L-\eta L^{2}} x_{t}+\varepsilon_{t}
$$

How can the parameters be estimated? Is OLS consistent?

