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Problem set # 3

1. (Midterm, 1997) Consider the least squares residual vector e from the
regression of y on X, where V (y) = σ2I. Show that the variance of any
element of e, say ej , is less that or equal to σ2.

2. (Midterm, 199?) Consider the OLS estimator in the model y = Xβ + ε
with E (ε) = 0 and E (εε′) = σ2I. Let the first column of X consist of ones
and let the other regressors be measured in deviations from means. Show
that the estimator of the intercept is uncorrelated with the estimators of
the slopes.

3. Consider the classical multiple regression model;

y = Xβ + ε

(a) Show that if E (ε) �= 0, the least squares estimator is biased.

(b) Show that if we write the model as

y = X1β1 + X2β2 + ε

and E (ε) = X1γ, the least squares estimator for β2 is unbiased.

4. Suppose that

Xn = 3 − 1
n2

Yn =
√

n
Zn

σ

where Zn = 1
n

∑n
i=1 Zi and Z ′

is are i.i.d. with mean zero and variance σ2.
Find the limiting distributions of

(a) Xn + Yn (b) XnYn (c) Y 2
n

5. Consider the two regression models;

y = α1D1 + α2D2 + α3D3 + α4D4 + ε

y = α + α2D2 + α3D3 + α4D4 + ε
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The variables are quarterly dummies. There are equal numbers of ob-
servations in each quarter. Obtain the least squares estimator in each
model. Prove that if there were a term βx in the two equations, the least
squares estimators of β would be identical. What happens to if you run
the following regression?

y = α + α1D1 + α2D2 + α3D3 + α4D4 + ε

6. Consider the following regression model;

y = Xβ + ε

Assume that

plim
X ′X
N

= Q where Q is positive definite

and E (ε) = 0, E (εε′) = σ2I. We also assume that X is non-stochastic.

(a) Prove that β̂
p→ β.

(b) Find the asymptotic distribution of
√

N
(
β̂ − β

)
.

(c) Prove that plims2 = σ2 where s2 = e′e
N−k

2



We will be very careful in indicating which theorem we use in each step.
We start from the definition of the least squares estimator;

β̂ = (X ′X)−1
X ′y = β + (X ′X)−1

X ′ε (1)

(a) It is much easier to see what is going on if we express the matrix
expression in terms of summation. After a thoughtful moment, you notice
that it is given by

(X ′X) =
N∑

i=1

xix
′
i

where xi is a (k × 1) vector corresponding to the ith observation. From
the condition given in the question

plim
1
N

X ′X = Q

We can conclude that

plim
1
N

N∑
i=1

xix
′
i = Q

The matrix notation is exactly the condition;

plim
X ′X
N

= Q (2)

What about (X ′ε)? − remember that (X ′ε) is a (k × 1) vector −. Again
it is given by

N∑
i=1

xiεi

Let’s scale the sum by N to get 1
N

∑N
i=1 xiεi. Note that

1
N

N∑
i=1

xiεi =
1
N

(x1ε1 + x2ε2 + · · · + xNεN )

The term is the sample average of xiεi, where xiε
′
is are independent ran-

dom vectors with mean 0 and variance σ2xix
′
i since

E (xiεi) = xiE (εi) = 0 since xi is non-stochastic.

V ar (xiεi) = E (xiεiεix
′
i) = xix

′
iE
(
ε2

i

)
= σ2xix

′
i

Cov (xiεi, xtεt) = E [xiεiεtx
′
t] = xix

′
tE (εiεt) = 0 since i �= t.

Then, from the Weak Law of Large Numbers(WLLN), we have

1
N

N∑
i=1

xiεi
p→ 0
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Then, in vector notation, we have

1
N

X ′ε
p→ 0 (3)

We will slightly reshape (1) to get;

β̂ = β +
(

X ′X
N

)−1
X ′ε
N

Then,

plimβ̂ = plimβ + plim
(

X ′X
N

)−1
X ′ε
N

by (b) in question2

= β + plim
(

X ′X
N

)−1

plim
X ′ε
N

by (a) in question2

= β +
(

plim
X ′X
N

)−1

plim
X ′ε
N

by Slutsky’s theorem

= β + Q−10 by (2) and (3) and Q is invertible
= β

i.e.
β̂

p→ β

In words, the least squares estimator β̂ is a consistent estimator for β.

(b) From (1), we have

β̂ − β = (X ′X)−1
X ′ε

Now, we want to scale slightly differently to invoke the Central Limit
Theorem(CLT);

√
N
(
β̂ − β

)
=
(

X ′X
N

)−1
X ′ε√

N
(4)

We know that (
X ′X
N

)−1
p→ Q−1 (5)

from (2). Now let’s take care of X′ε√
N

. Again, X′ε√
N

is given by

1√
N

N∑
i=1

xiεi =
1√
N

(x1ε1 + x2ε2 + · · · + xNεN)

As we’ve already seen in (a), xiε
′
is are independent random vectors with

mean 0 and variance σ2xix
′
i. Then, by CLT - here, we use a version of
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CLT in Page 7 of the lecture note since we have different variances across
observations-, (

N∑
i=1

σ2xix
′
i

) 1
2 N∑

i=1

xiεi
d→ N (0, I) (6)

where
(∑N

i=1 σ2xix
′
i

) 1
2

is a notation for Λ such that Λ2 =
∑N

i=1 σ2xix
′
i.

However, we know that

1
N

N∑
i=1

σ2xix
′
i = σ2 1

N

N∑
i=1

xix
′
i

p→ σ2Q (7)

from part (a). Hence,(
1
N

N∑
i=1

σ2xix
′
i

) 1
2

1√
N

N∑
i=1

xiεi
d→ N (0, I)

becomes
1√
N

N∑
i=1

xiεi
d→ N

(
0, σ2Q

)
(8)

Then, from (5) and (8) with (b) in question (3), we have

√
N
(
β̂ − β

)
=
(

X ′X
N

)−1
X ′ε√

N

d→ N
(
0, Q−1QQ−1

)
= N

(
0, Q−1

)
(c) Note that

s2 =
e′e

N − k
=

ε′Mε

N − k
since e = Mε

=
ε′
[
I − X (X ′X)−1

X ′
]
ε

N − k
=

N

N − k

[
ε′ε
N

− ε′X (X ′X)−1
X ′ε

N

]

=
N

N − k

[
ε′ε
N

− ε′X
N

(
X ′X
N

)−1
X ′ε
N

]

5



Now,

plims2 = plim
N

N − k
plim

[
ε′ε
N

− ε′X
N

(
X ′X
N

)−1
X ′ε
N

]
by (a) in question2

= plim
N

N − k

[
plim

ε′ε
N

− plim
ε′X
N

(
X ′X
N

)−1
X ′ε
N

]
by (b) in question2

= plim
N

N − k

[
plim

ε′ε
N

− plim
ε′X
N

plim
(

X ′X
N

)−1

plim
X ′ε
N

]
by (a) in question2

= plim
N

N − k

[
plim

ε′ε
N

− plim
ε′X
N

(
plim

X ′X
N

)−1

plim
X ′ε
N

]
by Slutsky′s theorem

=
[
σ2 − 0′Q−10

]
= σ2

since

plim
N→∞

N

N − k
= 1, plim

X ′ε
N

= 0 by (3)(
plim

X ′X
N

)−1

= Q−1 by (5)

and
ε′ε
N

=
1
N

N∑
i=1

ε2
i

which is again an average of ε2′
i s whose mean is E

(
ε2

i

)
= σ2 and ε2′

i s are
independent - we don’t need to calculate the variance here since we use
a version of WLLN in Notes 3 on page 3 of the lecture note. Then, by
WLLN

1
N

N∑
i=1

ε2
i

p→ σ2

Therefore,

plim
ε′ε
N

= σ2
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