Cornell University Department of Economics

Econ 620 - Spring 2003 Instructor: Prof. Kiefer TA: Fernando Grosz

Problem set # 2Due February 14th

1) Find the transformations that will linearize each of these functions:

a) $y = \frac{x}{\alpha x - \beta}$ b) $y = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$

2) Suppose that you have two independent unbiased estimators, say b_1 and b_2 of the same parameter β , with different variances, say v_1 and v_2 respectively. What linear combination $b = c_1b_1 + c_2b_2$ is the minumum variance unbiased estimator of β ?

3) You want to fit the model $y = \alpha + \beta x + \varepsilon$, but you do not have the full data set [y X] = Z. Instead, you only have Z'Z:

$$\mathbf{Z'Z} = \begin{bmatrix} 100 & 10 & 25\\ 10 & 20 & 0\\ 25 & 0 & 75 \end{bmatrix}$$

Calculate β, s^2 and \mathbb{R}^2 .

4) Show that in the model $y = X\beta + \varepsilon$, the square of the correlation between y and y is equal to R². (where $y = \beta_1 + \beta_2 x_2 + ... + \beta_k x_k$).

5) Suppose we regress x on y. We want to minimize the sum of squares of the residuals (RSS), but the residuals are now the horizontal distance (instead of the vertical distance), viewed in a graph with x in the horizontal axis. This gives another RSS which will correspond to the RSS of the regression of x on y. So we can regress y on x or x on y , but only one \mathbb{R}^2 can be computed for the data set.

Let b_{yx} and b_{xy} be the estimators of the slope in the regression of y on x and x on y respectively.

a) When will $b_{yx} = \frac{1}{b_{xy}}$? b) Will they always have the same sign?

c) Show that $r^2 = b_{yx} b_{xy}$.

d) From "c", it follows that $b_{yx} \leq 1/b_{xy}$ provided $b_{xy} > 0$. That is, viewed in a graph with X in the horizontal axis, the regression of x on y has a higher slope. Check part "c" and that $b_{yx} \leq 1/b_{xy}$ provided $b_{xy} > 0$ for this sample of 200 observations where:

$$\sum x = 11.34$$
 $\sum y = 20.72$ $\sum x^2 = 12.16$ $\sum y^2 = 84.96$ $\sum xy = 22.13$

6) Stochastic regressors:

Consider the model $y = X\beta + \varepsilon$. Let b be the OLS estimator of β . We will only relax the assumption that X is a matrix of constants; now the regressors are random variables, but uncorrelated with the error term

a) Find the unconditional expectation of b. Is b unbiased?

Hint: we know that $b=\beta + (X'X)^{-1}X'\varepsilon$. First, find the conditional expectation of b (this is straightforward: $E[b|X] = \beta + (X'X)^{-1}X'E[\varepsilon |X]$). Then, use the law of iterated expectations.

b) Find the unconditional variance of b and show that Var (b)= $\sigma^2 E[(X'X)^{-1}]$. Hint: use the decomposition $Var(b) = E_X[Var(b \mid X)] + Var_X E[b \mid X].$