Cornell University
 Department of Economics

Econ 620 - Spring 2003
Instructor: Prof. Kiefer
TA: Fernando Grosz

Problem set \# 2 Due February $14^{t h}$

1) Find the transformations that will linearize each of these functions:
a) $y=\frac{x}{\alpha x-\beta}$
b) $y=\frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}}$
2) Suppose that you have two independent unbiased estimators, say b_{1} and b_{2} of the same parameter β, with different variances, say v_{1} and v_{2} respectively. What linear combination $b=c_{1} b_{1}+c_{2} b_{2}$ is the minumum variance unbiased estimator of β ?
3) You want to fit the model $y=\alpha+\beta x+\varepsilon$, but you do not have the full data set $\left[\begin{array}{ll}\mathrm{y} & \mathrm{X}\end{array}\right]=\mathrm{Z}$. Instead, you only have Z 'Z:

$$
\mathrm{Z} ' \mathrm{Z}=\left[\begin{array}{ccc}
100 & 10 & 25 \\
10 & 20 & 0 \\
25 & 0 & 75
\end{array}\right]
$$

Calculate β, s^{2} and R^{2}.
4) Show that in the model $y=X \beta+\varepsilon$, the square of the correlation between y and \hat{y} is equal to R^{2}. (where $\quad \hat{y}=\beta_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}$).
5) Suppose we regress x on y. We want to minimize the sum of squares of the residuals (RSS), but the residuals are now the horizontal distance (instead of the vertical distance), viewed in a graph with x in the horizontal axis. This gives another RSS which will correspond to the RSS of the regression of x on y . So we can regress y on x or x on y , but only one R^{2} can be computed for the data set.

Let $\mathrm{b}_{y x}$ and $\mathrm{b}_{x y}$ be the estimators of the slope in the regression of y on x and x on y respectively.
a) When will $\mathrm{b}_{y x}=\frac{1}{b_{x y}}$?
b) Will they always have the same sign?
c) Show that $\mathrm{r}^{2}=\mathrm{b}_{y x} \mathrm{~b}_{x y}$.
d) From " c ", it follows that $\mathrm{b}_{y x} \leq 1 / \mathrm{b}_{x y}$ provided $\mathrm{b}_{x y}>0$. That is, viewed in a graph with X in the horizontal axis, the regression of x on y has a higher slope. Check part " c " and that $\mathrm{b}_{y x} \leq 1 / \mathrm{b}_{x y}$ provided $\mathrm{b}_{x y}>0$ for this sample of 200 observations where:

$$
\sum x=11.34 \quad \sum y=20.72 \quad \sum x^{2}=12.16 \quad \sum y^{2}=84.96 \quad \sum x y=22.13
$$

6) Stochastic regressors:

Consider the model $y=X \beta+\varepsilon$. Let b be the OLS estimator of β. We will only relax the assumption that X is a matrix of constants; now the regressors are random variables, but uncorrelated with the error term
a) Find the unconditional expectation of b. Is b unbiased?

Hint: we know that $\mathrm{b}=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon$. First, find the conditional expectation of b (this is straightforward: $\left.\mathrm{E}[\mathrm{b} \mid X]=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} E[\varepsilon \mid X]\right)$. Then, use the law of iterated expectations.
b) Find the unconditional variance of b and show that $\operatorname{Var}(b)=\sigma^{2} E\left[\left(X^{\prime} X\right)^{-1}\right]$.

Hint: use the decomposition $\operatorname{Var}(b)=E_{X}[\operatorname{Var}(b \mid X)]+\operatorname{Var}_{X} E[b \mid X]$.

