Cornell University
 Department of Economics

Econ 620 - Spring 2004
Instructor: Prof. Kiefer

Problem set \# 1

1) Show that $\log Y=\alpha+\beta \log X+u$ gives the same least squares estimator of β whether the logs are taken to base 10 or to base e. Is this true for the estimator of α ? Do your conclusions change if $\log \mathrm{X}$ is replaced by t (time)?
2) The following exercise is a remark on bivariate normal distributions and normality of its component:

Evaluate the following statement: if true, prove it; if false, show a counterexample: if X and Y are two standard normal random variables, then the joint distribution of (X, Y) is bivariate normal.

Remark : note that we are not saying anything about X and Y being independent. If they were, the statement is true. You have to consider the case of X and Y not necessarily being independent, and do not make them perfectly (positively or negatively) correlated. Also note that if (X,Y) is bivariate normal, then X will be a normal random variable and Y as well (but not necessarily standard normal).

Exercise 2 is difficult and you are allowed to skip it if you cannot come with the proof or a counterexample.
3) (Midterm 2001) Consider the simple regression model with no intercept

$$
y_{i}=\beta x_{i}+\varepsilon_{i} \quad i=1,2
$$

and suppose that the true value of β is 1 and the values of x realized in your sample are $\mathrm{x}_{1}=1$ and $\mathrm{x}_{2}=2$. The distribution of ε is given by $P(\varepsilon=-1)=$ $P(\varepsilon=1)=\frac{1}{2}$, and the ε_{i} are independent.
a) Does this model satisfy the requirements for OLS (ordinary least squares) to be BLUE ? (You do not need to provide a proof here)
b) Calculate the exact distribution of the OLS estimator.
c) Consider the alternative estimator $\beta^{*}=\frac{\sum y}{\sum x}$ and calculate its exact distribution. Is it unbiased?
d) compare the exact variances of the OLS estimator and β^{*}. Which one is smaller?
4) Suppose that the have the following information :

$$
\begin{array}{cll}
n=22, & \sum_{i} x_{i}=220, & \sum_{i} y_{i}=440 \\
\sum_{i} x_{i}^{2}=2260, & \sum_{i} y_{i}^{2}=8900, & \sum_{i} x_{i} y_{i}=4430
\end{array}
$$

a) Compute the OLS estimators of α and β in the model

$$
\begin{gathered}
y_{i}=\alpha+\beta x_{i}+\varepsilon_{i} \\
E\left(\varepsilon_{i}\right)=0, \quad V\left(\varepsilon_{i}\right)=\sigma^{2} \quad \text { and } E\left(\varepsilon_{i} \varepsilon_{j}\right)=0 \text { when } i \neq j .
\end{gathered}
$$

b) Compute the R^{2}
c) Assume now that the errors are normally distributed. Test the following hypothesis at the 5% significance level:

$$
\mathrm{H}_{0}: \beta=0 \quad \mathrm{H}_{A}: \beta \neq 0
$$

d) Test the following hypothesis at the 10% significance level:

$$
\mathrm{H}_{0}: \alpha-\beta=10 \quad \mathrm{H}_{A}: \alpha-\beta \neq 10
$$

5) (This question is mechanic but worth trying)

Show that the OLS estimator of the intercept in the model

$$
y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}
$$

$E\left(\varepsilon_{i}\right)=0, \quad V\left(\varepsilon_{i}\right)=\sigma^{2} \quad$ and $E\left(\varepsilon_{i} \varepsilon_{j}\right)=0$ when $i \neq j \quad$ is BLUE.
Hint: Write $\hat{\alpha}=\bar{y}-\hat{\beta} \bar{x}=\frac{1}{n} \sum_{i} y_{i}-\bar{x} \frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}=\sum_{i}\left[\frac{1}{n}-\bar{x} \frac{\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right] y_{i}=$ $\sum_{i} m_{i} y_{i}$ where $m_{i}=\left[\frac{1}{n}-\bar{x} \frac{\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right]$.

