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Suggested Solutions to the midterm exam

1.
(a) (x − y)′(x − y) = x′x + y′y − x′y − y′x = 1 + 1 − 2x′y ≥ 0
(x + y)′(x + y) = x′x + y′y + x′y + y′x = 1 + 1 + 2x′y ≥ 0 gives the desired formula.
(b) For the arbitrary length x and y, take x∗ = x√

x′x
, y∗ = y√

y′y then apply (a) with x∗ and y∗.

2.
(a) There are four kinds of tests. (note, C : critical region, A = {0, 1}\C : acceptance region)
T1 : C = {0} gives α = 3/4, β = 3/4.
T2 : C = {1} gives α = 1/4, β = 1/4.
T3 : C = {0, 1} gives α = 1, β = 0.
T4 : C = ∅ gives α = 0, β = 1.
Therefore T2 is the only test that gives α = 1/4, so it is the best test available.

(b) β = 1/4.

(c) Plot the pair (α, β) from T1 through T4. Note that T1 is dominated by T2 so the attainable tests are the line
connecting T2,T3,T4. in (α,β) plane.

(d) Now we have 16 possible tests (why?). By the Neyman-Pierson lemma, we know the best test is LR test. First,
let (a, b) imply x1 = a, x2 = b then consider the test with α = 1/16.

Since (1,1) has the maximum LR of (9/16)/(1/16), the test with C = {(1, 1)} gives the best test with α = 1/16, β =
7/16. (This is the only test with α = 1/16.)

C = {(0, 1)} or C = {(1, 0)} gives the best test with α = 3/16, β = 13/16.
C = {(1, 1), (0, 1)} or C = {(1, 1), (1, 0)} gives the best test with α = 4/16, β = 4/16.
C = {(1, 0), (0, 1)} gives the best test with α = 6/16, β = 10/16.
C = {(1, 1), (0, 1), (1, 0)} is the best test with α = 7/16, β = 1/16.
C = {(0, 0)} gives the best test with α = 9/16, β = 15/16.
C = {(1, 1), (0, 0)} gives the best test with α = 10/16, β = 6/16.
C = {(0, 0), (0, 1)} or C = {(0, 0), (1, 0)} gives the best test with α = 12/16, β = 12/16.
C = {(1, 1), (0, 0), (0, 1)} or C = {(1, 1), (0, 0), (1, 0)} gives the best test with α = 13/16, β = 3/16.
C = {(1, 1), (1, 0), (0, 1)} gives the best test with α = 15/16, β = 9/16.
Finally two trivial tests C = ∅ and C = {(1, 1), (0, 1), (1, 0), (0, 0)} are the best tests with α = 0, β = 1 and α = 1,

β = 0 respectively.
Plot those 16 points on the (α, β) plane and draw the closest convex hull to the origin by connecting the tests and

eliminating the dominated tests.
The more observation we have, the more tests are available. Although we could not see it in this example, we

generally can improve the power of the test as sample size increases with a given α.

3. Let θ =
(

α
β

)
, θ̂ =

(
α∗

β∗

)
, X =

⎛
⎜⎜⎜⎜⎜⎝

1 x1

1 x2

...
...

1
1 xN

⎞
⎟⎟⎟⎟⎟⎠ , and M =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 ... 0

0 0
...

...
. . .

0 0
0 ... 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The given model uses only the first and the last observation, so let X̃ =
(

1 x1

1 xN

)
and get

(
α∗

β∗

)
using OLS

estimation. But (
α∗

β∗

)
= (X̃ ′X̃)−1X̃ ′

(
y1

yN

)

= (X ′MX)−1
X ′My.(check this!)
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Note that the matrix M picks the first and the last observation from X (Also it is idempotent).

(a) Yes, it is unbiased since Eθ̂ = E

(
α∗

β∗

)
= E (X ′MX)−1 X ′My = E (X ′MX)−1 X ′M(Xθ + ε) = θ.

(b) Var(θ̂) = E(θ̂ − θ)(θ̂ − θ)′ = σ2(X ′MX)−1 = σ2

(
2 x1 + xN

x1 + xN x2
1 + x2

N

)−1

(c) Note that x1 and xN goes to negative infinity and positive infinity repectively in probability (or almost surely).
Using this we have plim Var(β∗) = 0 so, plim β∗ = β. But plim α∗ �= α. (check this ! ). Since this problem can be
interpreted as we have to fix x1 and xN , I gave the full credit to those who solved this using fixed x1 and xN , and
obtained the result that the both estimators are inconsistent.

(d) Let A1 = (1 1 ...1 0 0 ... 0)′ and A2 = (0 0 ...0 1 1 ... 1)′ that is A1 has N/2 ones in the first half elements and
A2 has them in the second half. If we define PA1 and PA2 as the projection onto the span of A1 and A2 respectively,
PA1 + PA2 transforms a vector into N/2 elements of the mean of the first half observation and N/2 elements of the
mean of the rest half observtion. For example,

(PA1 + PA2)y = PA1y + PA2y

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(1)
y(1)

...
y(1)
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0

y(2)
y(2)

...
y(2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(1)
y(1)

...
y(1)
y(2)
y(2)

...
y(2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (check this!)

The estimation of the given model is based on X̃ =
(

1 x(1)
1 x(2)

)
but using the fact that PA1 + PA2 is idempotent

(why? - use A1 and A2 are orthogonal), we have(
α∗∗

β∗∗

)
= (X̃ ′X̃)−1X̃ ′

(
y(1)
y(2)

)
=

(
X ′(PA1 + PA2)X

N/2

)−1
X ′(PA1 + PA2)y

N/2
.

= (X ′(PA1 + PA2)X)−1
X ′(PA1 + PA2)y.(check this!)

Now we have the unbiasedness of the estimators since

E (X ′(PA1 + PA2)X)−1
X ′(PA1 + PA2)y = E (X ′(PA1 + PA2)X)−1

X ′(PA1 + PA2)(Xθ + ε)
= θ.

(e)

V ar(θ̂) = σ2 (X ′(PA1 + PA2)X)−1

= σ2

[
N

2

(
1 x(1)
1 x(2)

)′ (1 x(1)
1 x(2)

)]−1

=
2σ2

N

(
2 x(1) + x(2)

x(1) + x(2) x(1)2 + x(2)2

)−1

(f) Both estimators are consistent. Note that x(1) x(2), y(1), y(2) converges to E(x(1)), E(x(2)), E(y(1)), E(y(2))
respectively. What is those values? Try to get that by assuming a density of xi.

(g) Clearly θ̂ = (X ′(PA1 + PA2)X)−1
X ′(PA1 + PA2)y is linear in y, therefore Gauss-Markov theorem tells us that

it is not BLUE.
Note that we can simply use (

α∗

β∗

)
=

(
1 x1

1 xN

)−1 (
y1

yN

)
(

α∗∗

β∗∗

)
=

(
1 x(1)
1 x(2)

)−1 (
y(1)
y(2)

)
for estimation. But the above solutions illustrate the generality and the usefulness of the matrix form.
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